Jump to content

Graph, Wall, Tome: Difference between revisions

No change in size ,  28 January 2020
Line 38: Line 38:
=== Expansion ===
=== Expansion ===


Einstein's mass-energy equation:
'''Einstein's General Relativity equation (1):'''
: $$E = mc^2$$
: $$R_{\mu v}-\frac{1}{2}Rg_{\mu v} = 8 \pi T_{\mu v}$$


'''Maxwell's equations (2):'''
'''Maxwell's equations (2):'''
Line 46: Line 46:
: $$\nabla \cdot \mathbf{B} = 0$$
: $$\nabla \cdot \mathbf{B} = 0$$
: $$\nabla \cdot \mathbf{E} = 0$$
: $$\nabla \cdot \mathbf{E} = 0$$
'''Yang-Mills equations (2):'''
: $$d^*_A F_A \propto J$$
'''Dirac equation (3)''':
: $$(i \not{D} - m)\psi = 0$$
'''Klein-Gordon equation (4):''''
: $$\frac{1}{c^2} \frac{\partial^2}{\partial t^2} \psi - \nabla^2 \psi + \frac{m^2 c^2}{\hbar^2} \psi = 0$$
Einstein's mass-energy equation:
: $$E = mc^2$$


Kepler's 2nd law:
Kepler's 2nd law:
Line 58: Line 70:
Newtons gravitational law:
Newtons gravitational law:
: $$F = \frac{G m_1 m_2}{r^2}$$
: $$F = \frac{G m_1 m_2}{r^2}$$
'''Einstein's General Relativity equation (1):'''
: $$R_{\mu v}-\frac{1}{2}Rg_{\mu v} = 8 \pi T_{\mu v}$$


Schrodinger's equation:
Schrodinger's equation:
: $$i \hbar \frac{\partial \psi}{\partial t} = - \frac{\hbar^2)}{2 m} \nabla^2 \psi + V \psi$$
: $$i \hbar \frac{\partial \psi}{\partial t} = - \frac{\hbar^2)}{2 m} \nabla^2 \psi + V \psi$$
'''Dirac equation (3)''':
: $$(i \not{D} - m)\psi = 0$$


Atiyah-Singer theorem:
Atiyah-Singer theorem:
: $$dim\, ker \not{D}_E - dim \, coker \not{D}_E = \int_M \hat{A}(M) \cdot ch(E)$$
: $$dim\, ker \not{D}_E - dim \, coker \not{D}_E = \int_M \hat{A}(M) \cdot ch(E)$$
'''Yang-Mills equations (2):'''
: $$d^*_A F_A \propto J$$


Defining relation of supersymmetry:
Defining relation of supersymmetry:
Line 88: Line 91:
Euler's formula for Zeta-function:
Euler's formula for Zeta-function:
: $$\sum\limits_{n=1}^{\infty} \frac{1}{n^{s}} =  \prod\limits_{p} \frac{1}{1 - \frac{1}{p^s}}$$
: $$\sum\limits_{n=1}^{\infty} \frac{1}{n^{s}} =  \prod\limits_{p} \frac{1}{1 - \frac{1}{p^s}}$$
'''Klein-Gordon equation (4):''''
: $$\frac{1}{c^2} \frac{\partial^2}{\partial t^2} \psi - \nabla^2 \psi + \frac{m^2 c^2}{\hbar^2} \psi = 0$$


== The Tome ==
== The Tome ==
43

edits