Jump to content

Graph, Wall, Tome: Difference between revisions

No change in size ,  28 January 2020
Line 46: Line 46:
: $$\nabla \cdot \mathbf{B} = 0$$
: $$\nabla \cdot \mathbf{B} = 0$$
: $$\nabla \cdot \mathbf{E} = 0$$
: $$\nabla \cdot \mathbf{E} = 0$$
Stokes' theorem:
: $$\int_M d\omega = \int_{\partial M}\omega$$
The boundary of a boundary is zero:
: $$\partial\partial = 0$$
Heisenberg's indeterminacy relation:
: $$\Delta x \Delta p \geq \frac{\hbar}{2}$$
Euler's formula for Zeta-function:
: $$\sum\limits_{n=1}^{\infty} \frac{1}{n^{s}} =Β  \prod\limits_{p} \frac{1}{1 - \frac{1}{p^s}}$$
'''Klein-Goarden equation (4):''''
: $$\frac{1}{c^2} \frac{\partial^2}{\partial t^2} \psi - \nabla^2 \psi + \frac{m^2 c^2}{\hbar^2} \psi = 0$$


Kepler's 2nd law:
Kepler's 2nd law:
Line 91: Line 76:
Defining relation of supersymmetry:
Defining relation of supersymmetry:
: $$\{Q,Q\} = P$$
: $$\{Q,Q\} = P$$
Stokes' theorem:
: $$\int_M d\omega = \int_{\partial M}\omega$$
The boundary of a boundary is zero:
: $$\partial\partial = 0$$
Heisenberg's indeterminacy relation:
: $$\Delta x \Delta p \geq \frac{\hbar}{2}$$
Euler's formula for Zeta-function:
: $$\sum\limits_{n=1}^{\infty} \frac{1}{n^{s}} =Β  \prod\limits_{p} \frac{1}{1 - \frac{1}{p^s}}$$
'''Klein-Goarden equation (4):''''
: $$\frac{1}{c^2} \frac{\partial^2}{\partial t^2} \psi - \nabla^2 \psi + \frac{m^2 c^2}{\hbar^2} \psi = 0$$


== The Tome ==
== The Tome ==
Anonymous user