Maxwell's Equations: Difference between revisions
no edit summary
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
: $$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \ | : $$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$ | ||
: $$\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t}$$ | : $$\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t}$$ | ||
: $$\nabla \cdot \mathbf{B} = 0$$ | : $$\nabla \cdot \mathbf{B} = 0$$ | ||
Line 7: | Line 7: | ||
In the example of an ideal vacuum with no charge or current, (i.e., $$\rho=0$$ and $$\mathbf{J}=0$$), these equations reduce to: | In the example of an ideal vacuum with no charge or current, (i.e., $$\rho=0$$ and $$\mathbf{J}=0$$), these equations reduce to: | ||
: $$\nabla \times \mathbf{B} = +\ | : $$\nabla \times \mathbf{B} = + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$ | ||
: $$\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t}$$ | : $$\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t}$$ | ||
: $$\nabla \cdot \mathbf{B} = 0$$ | : $$\nabla \cdot \mathbf{B} = 0$$ |