Jump to content

Navier-Stokes equation: Difference between revisions

no edit summary
No edit summary
No edit summary
 
Line 8: Line 8:
These balance equations arise from applying Isaac Newton's second law to fluid motion, together with the assumption that the stress in the fluid is the sum of a diffusing viscous term (proportional to the gradient of velocity) and a pressure term—hence describing viscous flow. The main difference between them and the simpler Euler equations for inviscid flow is that Navier–Stokes equations also factor in the Froude limit (no external field) and are not conservation equations, but rather a dissipative system, in the sense that they cannot be put into the quasilinear homogeneous form:
These balance equations arise from applying Isaac Newton's second law to fluid motion, together with the assumption that the stress in the fluid is the sum of a diffusing viscous term (proportional to the gradient of velocity) and a pressure term—hence describing viscous flow. The main difference between them and the simpler Euler equations for inviscid flow is that Navier–Stokes equations also factor in the Froude limit (no external field) and are not conservation equations, but rather a dissipative system, in the sense that they cannot be put into the quasilinear homogeneous form:


$$ {\mathbf {y} _{t}+\mathbf {A} (\mathbf {y} )\mathbf {y} _{x}=0.}{\displaystyle \mathbf {y} _{t}+\mathbf {A} (\mathbf {y} )\mathbf {y} _{x}=0.} $$
<math> {\mathbf {y} _{t}+\mathbf {A} (\mathbf {y} )\mathbf {y} _{x}=0.}{\displaystyle \mathbf {y} _{t}+\mathbf {A} (\mathbf {y} )\mathbf {y} _{x}=0} </math>


The Navier–Stokes equations are useful because they describe the physics of many phenomena of scientific and engineering interest. They may be used to model the weather, ocean currents, water flow in a pipe and air flow around a wing. The Navier–Stokes equations, in their full and simplified forms, help with the design of aircraft and cars, the study of blood flow, the design of power stations, the analysis of pollution, and many other things. Coupled with Maxwell's equations, they can be used to model and study magnetohydrodynamics.
The Navier–Stokes equations are useful because they describe the physics of many phenomena of scientific and engineering interest. They may be used to model the weather, ocean currents, water flow in a pipe and air flow around a wing. The Navier–Stokes equations, in their full and simplified forms, help with the design of aircraft and cars, the study of blood flow, the design of power stations, the analysis of pollution, and many other things. Coupled with Maxwell's equations, they can be used to model and study magnetohydrodynamics.