Jump to content

Talk:Graph, Wall, Tome: Difference between revisions

no edit summary
No edit summary
No edit summary
 
Line 20: Line 20:
First identity
First identity


$$ R_{abcd}+R_{acdb}+R_{adbc}=0 $$
<math> R_{abcd}+R_{acdb}+R_{adbc}=0 </math>


Second Identity
Second Identity


$$ R_{abcd;e}+R_{abde;c}+R_{abec;d}=0 $$
<math> R_{abcd;e}+R_{abde;c}+R_{abec;d}=0 </math>


Non relativistic shrodinger eq gets removed  
Non relativistic shrodinger eq gets removed  


$$ (d_A)^2 = F_A $$
<math> (d_A)^2 = F_A </math>


Riemann curvature tensor decomposition  
Riemann curvature tensor decomposition  


$$ R_{abcd}=S_{abcd}+E_{abcd}+C_{abcd} $$
<math> R_{abcd}=S_{abcd}+E_{abcd}+C_{abcd} </math>


Cosmological ‘constant’ added to Einstein field equations
Cosmological ‘constant’ added to Einstein field equations


$$ R_{\mu \nu }-{\tfrac {1}{2}}Rg_{\mu \nu }+\Lambda g_{\mu \nu }={8\pi G \over c^{4}}T_{\mu \nu} $$
<math> R_{\mu \nu }-{\tfrac {1}{2}}Rg_{\mu \nu }+\Lambda g_{\mu \nu }={8\pi G \over c^{4}}T_{\mu \nu} </math>


Geometric quantization gives heisenberg uncertainty
Geometric quantization gives heisenberg uncertainty
Line 42: Line 42:
Kostant-Souriau prequantum operator
Kostant-Souriau prequantum operator


$$ Q(f):=-i\hbar \left(X_{f}-{\frac {i}{\hbar }}\theta (X_{f})\right)+f $$ Borel Weil Bott added
<math> Q(f):=-i\hbar \left(X_{f}-{\frac {i}{\hbar }}\theta (X_{f})\right)+f </math> Borel Weil Bott added


Levi Civita constructed from metric
Levi Civita constructed from metric