6,489
edits
No edit summary |
No edit summary |
||
Line 533: | Line 533: | ||
''[https://youtu.be/Z7rd04KzLcg?t=5741 01:35:41]''<br> | ''[https://youtu.be/Z7rd04KzLcg?t=5741 01:35:41]''<br> | ||
Now, this is a tremendous amount of freedom that we've just gained. Normally, we keep losing freedom, but this is the first time we actually begin to see that we have a lot of freedom, and we're going to actually retain some of this freedom to the end of the talk. But the idea being that I can now start to define operators which correspond to the "Ship in the Bottle" problem. I can take field content \(\ | Now, this is a tremendous amount of freedom that we've just gained. Normally, we keep losing freedom, but this is the first time we actually begin to see that we have a lot of freedom, and we're going to actually retain some of this freedom to the end of the talk. But the idea being that I can now start to define operators which correspond to the "Ship in the Bottle" problem. I can take field content \(\varepsilon\) and \(\pi\), where these are elements of the inhomogeneous gauge group. In other words, \(\varepsilon\) is a gauge transformation, and \(\pi\) is a gauge potential. | ||
<div style="text-align: center; margin-left: auto; margin-right: auto;">$$ (\ | <div style="text-align: center; margin-left: auto; margin-right: auto;">$$ (\varepsilon, \pi) \in \mathcal{G} $$</div> | ||
Line 543: | Line 543: | ||
<div style="text-align: center; margin-left: auto; margin-right: auto;">$$ \bigcirc\kern-0.940em\circ\kern-0.58emĀ·\text{}\kern0.3em_\ | <div style="text-align: center; margin-left: auto; margin-right: auto;">$$ \bigcirc\kern-0.940em\circ\kern-0.58emĀ·\text{}\kern0.3em_\varepsilon \eta = [\text{Ad}(\varepsilon^{-1}, \Phi), \eta] $$</div> | ||
Line 553: | Line 553: | ||
<div style="text-align: center; margin-left: auto; margin-right: auto;">$$ \bigcirc\kern-0.940em\circ\kern-0.58emĀ·\text{}\kern0.3em_\ | <div style="text-align: center; margin-left: auto; margin-right: auto;">$$ \bigcirc\kern-0.940em\circ\kern-0.58emĀ·\text{}\kern0.3em_\varepsilon \Omega^i(ad) \rightarrow \Omega^{d-3+i}(ad) $$</div> | ||
Line 585: | Line 585: | ||
<div style="text-align: center; margin-left: auto; margin-right: auto;">$$ T_{\ | <div style="text-align: center; margin-left: auto; margin-right: auto;">$$ T_{\varepsilon, \pi} = \Pi - h^{-1}d_{A_0}h $$</div> | ||
Line 605: | Line 605: | ||
<div style="text-align: center; margin-left: auto; margin-right: auto;">$$ \bigcirc\kern-0.940em\circ\kern-0.58emĀ·\text{}\kern0.3em_\ | <div style="text-align: center; margin-left: auto; margin-right: auto;">$$ \bigcirc\kern-0.940em\circ\kern-0.58emĀ·\text{}\kern0.3em_\varepsilon F_\pi +[\bigcirc\kern-0.940em\circ\kern-0.58emĀ·\text{}\kern0.3em_\varepsilon T_\omega, T_{\varepsilon, \pi}] + *T_{\varepsilon, \pi} = 0 $$</div> | ||
Line 661: | Line 661: | ||
''[https://youtu.be/Z7rd04KzLcg?t=6677 01:51:17]''<br> | ''[https://youtu.be/Z7rd04KzLcg?t=6677 01:51:17]''<br> | ||
I'm going to do that again on the other side. There are going to be plus and minus signs, but it's a magic bracket that knows whether or not it should be a plus sign or a minus sign and I apologize for that, but I'm not able to keep that straight. And then there's going to be one extra term, where all these \(T\)s have the \(\ | I'm going to do that again on the other side. There are going to be plus and minus signs, but it's a magic bracket that knows whether or not it should be a plus sign or a minus sign and I apologize for that, but I'm not able to keep that straight. And then there's going to be one extra term, where all these \(T\)s have the \(\varepsilon\) and \(\pi\)s. | ||
''[https://youtu.be/Z7rd04KzLcg?t=6710 01:51:50]''<br> | ''[https://youtu.be/Z7rd04KzLcg?t=6710 01:51:50]''<br> | ||
Line 700: | Line 700: | ||
<div style="text-align: center; margin-left: auto; margin-right: auto;">$$ \bigcirc\kern-0.96em\circ\kern-0.60emĀ·\text{}\kern0.3em_\ | <div style="text-align: center; margin-left: auto; margin-right: auto;">$$ \bigcirc\kern-0.96em\circ\kern-0.60emĀ·\text{}\kern0.3em_\varepsilon d_A \zeta + [\bigcirc\kern-0.96em\circ\kern-0.60emĀ·\text{}\kern0.3em_\varepsilon\zeta, T] + [T, \bigcirc\kern-0.96em\circ\kern-0.60emĀ·\text{}\kern0.3em_\varepsilon\zeta] + *\zeta = F_A \bigcirc\kern-0.96em\circ\kern-0.60emĀ·\text{}\kern0.3em \nu + [[T, \nu], T] + [T, [T, \nu]] + [[T, \bigcirc\kern-0.96em\circ\kern-0.60emĀ·\text{}\kern0.3em \nu], T] + *\nu $$</div> | ||
Line 727: | Line 727: | ||
<div style="text-align: center; margin-left: auto; margin-right: auto;">$$ *(d_A^* \bigcirc\kern-0.940em\circ\kern-0.58emĀ·\text{}\kern0.3em^* + * + ...)(\bigcirc\kern-0.940em\circ\kern-0.58emĀ·\text{}\kern0.3em_\ | <div style="text-align: center; margin-left: auto; margin-right: auto;">$$ *(d_A^* \bigcirc\kern-0.940em\circ\kern-0.58emĀ·\text{}\kern0.3em^* + * + ...)(\bigcirc\kern-0.940em\circ\kern-0.58emĀ·\text{}\kern0.3em_\varepsilon F_{A_\pi} + ...) $$</div> | ||