Jump to content

A Portal Special Presentation- Geometric Unity: A First Look: Difference between revisions

no edit summary
No edit summary
No edit summary
(16 intermediate revisions by the same user not shown)
Line 21: Line 21:
|next=ep29
|next=ep29
}}
}}
'''A Portal Special Presentation- Geometric Unity: A First Look''' was uploaded on April 2nd as a general introduction to [[Geometric Unity]]. The video is divided into three sections: a preface, the lecture proper, and a supplementary PowerPoint presentation. The preface provides context based on historical and contemporary events and introduces the concept of a theory of everything. The lecture shown is a recording of [[Eric Weinstein]]'s first Geometric Unity lecture given at the University of Oxford as a Simonyi Special Lecture by invitation of Marcus du Sautoy, the Simonyi Professor for the Public Understanding of Science. The PowerPoint reviews the lecture's major concepts in a more up-to-date notation.
'''A Portal Special Presentation- Geometric Unity: A First Look''' was uploaded on April 2nd as a general introduction to [[Geometric Unity]]. The video is divided into three sections: a preface, the lecture proper, and a supplementary PowerPoint presentation. The preface provides context based on historical and contemporary events and introduces the concept of a theory of everything. The lecture shown is a recording of [[Eric Weinstein]]'s first Geometric Unity lecture given at the University of Oxford as a Simonyi Special Lecture by invitation of Marcus du Sautoy, the Simonyi Professor for the Public Understanding of Science. The PowerPoint reviews the lecture's major concepts in a more up-to-date notation.


Line 41: Line 40:
|laterrevisor=Aardvark#5610
|laterrevisor=Aardvark#5610
|editors=
|editors=
|furthercontributors=
|furthercontributors=Tim (TimMelon#7940) and Nick (ker(∂n)/im(∂n-1)≅πn(X), n≀dim(X)#7337)
}}
}}
=== Preface ===
=== Preface ===
Line 61: Line 60:


''[https://youtu.be/Z7rd04KzLcg?t=445 00:07:25]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=445 00:07:25]''<br>
Now, why is that? Well, many people confuse a theory of everything, as if they imagine that it's a theory in which you can compute every eventuality, and it is absolutely not that, because the computational power is very different than the question of whether or not the rules are effectively given. I've analogized it to a game of chess, and knowing all of the rules is equivalent to a theory of everything. Knowing how to play chess well is an entirely different question. But in the case of a theory of everything, or a unified field theory if you will, many people also take it to be an answer to the question, "Why is there something rather than nothing?" And I don't think that this is, in fact, what a theory of everything is meant to be either. Now, why is that? Well, because I believe at some level it is impossible for most of us to imagine an airtight argument, mathematically speaking, which coaxes out of an absolute void a something. However, there's a different question which I think might actually animate us, and which is the right question to ask of a potential candidate. And that is, "How does one get everything from almost nothing?" In the M.C. Escher drawing or lithograph, ''Hands Drawing Hands'', or ''Drawing Hands'', what we see is that the paper is presupposed. That is, if you could imagine a theory of everything, it would be like saying, "If I posit the paper, can the paper will the ink into being, such that the ink gives rise to the pens, and the pens draw the hands, which in fact manipulate the pens to use the ink?" That kind of a problem is one which is of a very different character than everything that has gone before. It is also, in my opinion, an explanation of why the physics community has been stalled for nearly 50 years since around 1973, when the standard model was intellectually in place.
Now, why is that? Well, many people confuse a theory of everything, as if they imagine that it's a theory in which you can compute every eventuality, and it is absolutely not that, because the computational power is very different than the question of whether or not the rules are effectively given. I've analogized it to a game of chess, and knowing all of the rules is equivalent to a theory of everything. Knowing how to play chess well is an entirely different question. But in the case of a theory of everything, or a unified field theory if you will, many people also take it to be an answer to the question, "Why is there something rather than nothing?" And I don't think that this is, in fact, what a theory of everything is meant to be either. Now, why is that? Well, because I believe at some level it is impossible for most of us to imagine an airtight argument, mathematically speaking, which coaxes out of an absolute void a something. However, there's a different question which I think might actually animate us, and which is the right question to ask of a potential candidate. And that is, "How does one get everything from almost nothing?" In the M.C. Escher drawing or lithograph, ''Hands Drawing Hands'', or ''Drawing Hands'', what we see is that the paper is presupposed. That is, if you could imagine a theory of everything, it would be like saying, "If I posit the paper, can the paper will the ink into being, such that the ink gives rise to the pens, and the pens draw the hands, which in fact manipulate the pens to use the ink?" That kind of a problem is one which is of a very different character than everything that has gone before. It is also, in my opinion, an explanation of why the physics community has been stalled for nearly 50 years since around 1973, when the Standard Model was intellectually in place.


''[https://youtu.be/Z7rd04KzLcg?t=566 00:09:26]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=566 00:09:26]''<br>
Now, consider this: we have never had, in modern times, a drought where no person working in pure fundamental theory has taken a trip to Stockholm—just as a rough indicator—for contributing to the standard model. No one, in my opinion, since let's see, [https://en.wikipedia.org/wiki/Frank_Wilczek Frank Wilczek], who was born in 1951—no one born after that time has in fact contributed to the standard model in a clear and profound way. That is not to say that no work has been done, but for the most part, the current generation of physicists has, for more than 40 years and almost 50 years, remained stagnant within the standard paradigm of physics, which is positing theories that are then verified by experiment. Now my belief, which is relatively radical, is that there is no way to get to our final destination using the tools that have gotten us to where we are now. In other words, what got you here cannot get you there.
Now, consider this: we have never had, in modern times, a drought where no person working in pure fundamental theory has taken a trip to Stockholm—just as a rough indicator—for contributing to the Standard Model. No one, in my opinion, since let's see, [https://en.wikipedia.org/wiki/Frank_Wilczek Frank Wilczek], who was born in 1951—no one born after that time has in fact contributed to the Standard Model in a clear and profound way. That is not to say that no work has been done, but for the most part, the current generation of physicists has, for more than 40 years and almost 50 years, remained stagnant within the standard paradigm of physics, which is positing theories that are then verified by experiment. Now my belief, which is relatively radical, is that there is no way to get to our final destination using the tools that have gotten us to where we are now. In other words, what got you here cannot get you there.


====The Political Economy of Science====
====The Political Economy of Science====
Line 193: Line 192:




<div style="text-align: center; margin-left: auto; margin-right: auto;">$$ SU(3) \text{ (color)} \times SU(2) \text{ (weak isospin)} \times U(1) \text{ (weak hypercharge)}$$</div>  
<div style="text-align: center; margin-left: auto; margin-right: auto;">$$ \text{SU}(3) \text{ (color)} \times \text{SU}(2) \text{ (weak isospin)} \times \text{U}(1) \text{ (weak hypercharge)}$$</div>  




Which breaks down to \(SU(3) \times U(1)\), where the broken \(U(1)\) is the electromagnetic symmetry. This equation is also a curvature equation—the corresponding equation—and it says that this time, the curvature of an auxiliary structure known as a gauge potential, when differentiated in a particular way is equal, again, to the amount of stuff in the system that is not directly involved in the left-hand side of the equation. So it has many similarities to the above equation, both involve curvature. One involves a projection, or a series of projections. The other involves a differential operator.
Which breaks down to \(\text{SU}(3) \times \text{U}(1)\), where the broken \(\text{U}(1)\) is the electromagnetic symmetry. This equation is also a curvature equation—the corresponding equation—and it says that this time, the curvature of an auxiliary structure known as a gauge potential, when differentiated in a particular way is equal, again, to the amount of stuff in the system that is not directly involved in the left-hand side of the equation. So it has many similarities to the above equation, both involve curvature. One involves a projection, or a series of projections. The other involves a differential operator.




Line 225: Line 224:


''[https://youtu.be/Z7rd04KzLcg?t=3075 00:51:15]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=3075 00:51:15]''<br>
But the problem is that the hallmark of the Yang-Mills theory is the freedom to choose the data, the internal quantum numbers that give all the particles their personalities beyond the mass and the spin. In addition to all of that freedom is some means of taking away some of the redundancy that comes with that freedom, which is the action of the gauge group. Now we can allow the gauge group of symmetries to act on both sides of the equation, but the key problem is that if I act on connections on the right and then take the Einstein projection, this is not equal to first taking the projection and then conjugating with the gauge action. So the problem is that the projection is based on the fact that you have a relationship between the intrinsic geometry—if this is an ad-valued two-form—the two-form portion of this and the adjoint portion of this are both associated to the structure group of the tangent bundle. But the gauge rotation is only acting on one of the two factors, yet the projection is making use of both of them. So there is a fundamental incompatibility, and the claim that Einstein's theory is a gauge theory relies more on analogy than on an exact mapping between the two theories.
But the problem is that the hallmark of the Yang-Mills theory is the freedom to choose the data, the internal quantum numbers that give all the particles their personalities beyond the mass and the spin. In addition to all of that freedom is some means of taking away some of the redundancy that comes with that freedom, which is the action of the gauge group. Now we can allow the gauge group of symmetries to act on both sides of the equation, but the key problem is that if I act on connections on the right and then take the Einstein projection, this is not equal to first taking the projection and then conjugating with the gauge action. So the problem is that the projection is based on the fact that you have a relationship between the intrinsic geometry—if this is an ad-valued 2-form—the 2-form portion of this and the adjoint portion of this are both associated to the structure group of the tangent bundle. But the gauge rotation is only acting on one of the two factors, yet the projection is making use of both of them. So there is a fundamental incompatibility, and the claim that Einstein's theory is a gauge theory relies more on analogy than on an exact mapping between the two theories.


''[https://youtu.be/Z7rd04KzLcg?t=3191 00:53:11]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=3191 00:53:11]''<br>
Line 239: Line 238:


''[https://youtu.be/Z7rd04KzLcg?t=3461 00:57:41]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=3461 00:57:41]''<br>
There are other possibilities that while each of these may be simplest in its category, they are not simplest in their interaction. For example, we know that Dirac famously took the square root of the Klein-Gordon equation to achieve the Dirac equation—he actually took two square roots, one of the differential operator, and another of the algebra on which it acts. But could we not do the same thing by re-interpreting what we saw in Donaldson theory and Chern-Simons theory, and finding that there are first-order equations that imply second-order equations that are nonlinear and in the curvature? So let's imagine the following: we replace the standard model with a true second-order theory. We imagine that general relativity is replaced by a true first-order theory. And then we find that the true second-order theory admits of a square root and can be linked with the true first-order theory. This would be a program for some kind of unification of Dirac's type, but in the force sector. The question is, "Does this really make any sense? Are there any possibilities to do any such thing?"
There are other possibilities that while each of these may be simplest in its category, they are not simplest in their interaction. For example, we know that Dirac famously took the square root of the Klein-Gordon equation to achieve the Dirac equation—he actually took two square roots, one of the differential operator, and another of the algebra on which it acts. But could we not do the same thing by re-interpreting what we saw in Donaldson theory and Chern-Simons theory, and finding that there are first-order equations that imply second-order equations that are nonlinear and in the curvature? So let's imagine the following: we replace the Standard Model with a true second-order theory. We imagine that general relativity is replaced by a true first-order theory. And then we find that the true second-order theory admits of a square root and can be linked with the true first-order theory. This would be a program for some kind of unification of Dirac's type, but in the force sector. The question is, "Does this really make any sense? Are there any possibilities to do any such thing?"


==== Motivations for Geometric Unity ====
==== Motivations for Geometric Unity ====
Line 342: Line 341:


''[https://youtu.be/Z7rd04KzLcg?t=4435 01:13:55]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=4435 01:13:55]''<br>
But now, as \(\theta\) changes, the fermions are defined on the chimeric bundle, and it's the isomorphism from the chimeric bundle to the tangent bundle of the space \(U\), which is variant—which means that the fermions no longer depend on the metric. They no longer depend on the \(\theta\) connection. They are there if things go quantum mechanical, and we've achieved our objective of putting the matter fields and the spin-one fields on something of the same footing.
But now, as \(\theta\) changes, the fermions are defined on the chimeric bundle, and it's the isomorphism from the chimeric bundle to the tangent bundle of the space \(U\), which is variant—which means that the fermions no longer depend on the metric. They no longer depend on the \(\theta\) connection. They are there if things go quantum mechanical, and we've achieved our objective of putting the matter fields and the spin-1 fields on something of the same footing.


====== Observerse Conclusion ======
====== Observerse Conclusion ======
Line 352: Line 351:


''[https://youtu.be/Z7rd04KzLcg?t=4539 01:15:39]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=4539 01:15:39]''<br>
Well, let me just sum this up by saying: between fundamental and emergent, standard model and GR... Let's do GR. Fundamental is the metric, emergent is the connection. Here in GU, it is the connection that's fundamental and the metric that's emergent.
Well, let me just sum this up by saying: between fundamental and emergent, Standard Model and GR... Let's do GR. Fundamental is the metric, emergent is the connection. Here in GU, it is the connection that's fundamental and the metric that's emergent.


==== Unified Field Content ====
==== Unified Field Content ====
Line 429: Line 428:


''[https://youtu.be/Z7rd04KzLcg?t=5046 01:24:06]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=5046 01:24:06]''<br>
So when I was thinking about this, I used to be amazed by ships in bottles, and I must confess that I never figured out what the trick was for ships in bottles. But once I saw it, I remembered thinking, 'That's really clever.' So, if you've never seen it, you have a ship, which is like a curvature tensor, and imagine that the mast is the Ricci curvature. If you just try to shove it into the bottle, you're undoubtedly going to snap the mast. So, you imagine that you've transformed your gauge fields, you've kept track of where the Ricci curvature was, you try to push it from one space, like ad-valued two-forms, into another space, like ad-valued one-forms, where connections live.
So when I was thinking about this, I used to be amazed by ships in bottles, and I must confess that I never figured out what the trick was for ships in bottles. But once I saw it, I remembered thinking, 'That's really clever.' So, if you've never seen it, you have a ship, which is like a curvature tensor, and imagine that the mast is the Ricci curvature. If you just try to shove it into the bottle, you're undoubtedly going to snap the mast. So, you imagine that you've transformed your gauge fields, you've kept track of where the Ricci curvature was, you try to push it from one space, like ad-valued 2-forms, into another space, like ad-valued 1-forms, where connections live.


[[File:GU Oxford Lecture Shiab Unbroken Slide.png|center]]
[[File:GU Oxford Lecture Shiab Unbroken Slide.png|center]]
Line 440: Line 439:


''[https://youtu.be/Z7rd04KzLcg?t=5143 01:25:43]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=5143 01:25:43]''<br>
Let's think about unified content. We know that we want a space of connections \(A\) for our field theory. But we know, because we have a Levi-Civita connection, that this is going to be equal on the nose to ad-valued one-forms as a vector space. The gauge group represents on ad-valued one-forms.
Let's think about unified content. We know that we want a space of connections \(\mathscr{A}\) for our field theory. But we know, because we have a Levi-Civita connection, that this is going to be equal on the nose to ad-valued 1-forms as a vector space. The gauge group represents on ad-valued 1-forms.




<div style="text-align: center; margin-left: auto; margin-right: auto;">$$ A = \Omega^1(ad) $$</div>
<div style="text-align: center; margin-left: auto; margin-right: auto;">$$ \mathscr{A} = \Omega^1(ad) $$</div>




Line 452: Line 451:


''[https://youtu.be/Z7rd04KzLcg?t=5185 01:26:25]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=5185 01:26:25]''<br>
Well by analogy, we've always had a problem with the Poincaré group being too intrinsically tied to rigid, flat Minkowski space. What if we wanted to do quantum field theory in some situation which was more amenable to a curved space situation?''' '''It's possible that we should be basing it around something more akin to the gauge group. And in this case, we're mimicking the construction, where \(\Xi\) here would be analogous to the Lorentz group fixing a point in Minkowski space, and ad-valued one-forms would be analogous to the four momentums we take in the semi-direct product to create the inhomogeneous Lorentz group, otherwise known as the Poincaré group, or rather its double cover to allow spin.
Well by analogy, we've always had a problem with the Poincaré group being too intrinsically tied to rigid, flat Minkowski space. What if we wanted to do quantum field theory in some situation which was more amenable to a curved space situation?''' '''It's possible that we should be basing it around something more akin to the gauge group. And in this case, we're mimicking the construction, where \(\Xi\) here would be analogous to the Lorentz group fixing a point in Minkowski space, and ad-valued 1-forms would be analogous to the four momentums we take in the semi-direct product to create the inhomogeneous Lorentz group, otherwise known as the Poincaré group, or rather its double cover to allow spin.


''[https://youtu.be/Z7rd04KzLcg?t=5232 01:27:12]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=5232 01:27:12]''<br>
Line 503: Line 502:


''[https://youtu.be/Z7rd04KzLcg?t=5533 01:32:13]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=5533 01:32:13]''<br>
And now the question is, do we have any such actions that are particularly nice, and could we recognize them the way Einstein did, by trying to write down not the action—and Hilbert was the first one to write that down but I, you know, I always feel defensive, because I think Einstein and Grossmann did so much more to begin the theory, and that the Lagrangian that got written down was really just an inevitability. So, just humor me for this talk, and let me call it the Einstein-Grossmann Lagrangian. Hilbert's certainly done fantastic things and has a lot of credit elsewhere, and he did do it first. But here, what we had was that Einstein thought in terms of the differential of the action, not the action itself. So, what we're looking for is equations of motion or some field \(\alpha\), where \(\alpha\) belongs to the one-forms on the group.
And now the question is, do we have any such actions that are particularly nice, and could we recognize them the way Einstein did, by trying to write down not the action—and Hilbert was the first one to write that down but I, you know, I always feel defensive, because I think Einstein and Grossmann did so much more to begin the theory, and that the Lagrangian that got written down was really just an inevitability. So, just humor me for this talk, and let me call it the Einstein-Grossmann Lagrangian. Hilbert's certainly done fantastic things and has a lot of credit elsewhere, and he did do it first. But here, what we had was that Einstein thought in terms of the differential of the action, not the action itself. So, what we're looking for is equations of motion or some field \(\alpha\), where \(\alpha\) belongs to the 1-forms on the group.




Line 550: Line 549:


''[https://youtu.be/Z7rd04KzLcg?t=5854 01:37:34]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=5854 01:37:34]''<br>
So for example, I can define a '''shiab operator '''(ship in a bottle operator) that takes i-forms valued in the adjoint bundle to much higher-degree forms valued in the adjoint bundle.
So for example, I can define a '''shiab operator '''(ship in a bottle operator) that takes \(i\)-forms valued in the adjoint bundle to much higher-degree forms valued in the adjoint bundle.




Line 557: Line 556:


''[https://youtu.be/Z7rd04KzLcg?t=5880 01:38:00]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=5880 01:38:00]''<br>
So for this case, for example, it would take a two-form to a d-minus-three-plus-two or a d-minus-one-form. So curvature is an ad-valued two-form. And, if I had such a shiab operator, it would take ad-valued two-forms to ad-valued d-minus-one-forms, which is exactly the right space to be an \(\alpha\) coming from the derivative of an action.
So for this case, for example, it would take a 2-form to a \((d - 3 + 2)\) or a \((d - 1)\)-form. So curvature is an ad-valued 2-form. And, if I had such a shiab operator, it would take ad-valued 2-forms to ad-valued \((d - 1)\)-forms, which is exactly the right space to be an \(\alpha\) coming from the derivative of an action.


''[https://youtu.be/Z7rd04KzLcg?t=5918 01:38:38]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=5918 01:38:38]''<br>
Line 563: Line 562:


''[https://youtu.be/Z7rd04KzLcg?t=5968 01:39:28]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=5968 01:39:28]''<br>
'''Audience Member:''' Can you just clarify what the index on the shiab is? So you take i-forms to d-minus-three-plus-1?
'''Audience Member:''' Can you just clarify what the index on the shiab is? So you take \(i\)-forms to \(d - 3 + 1\)?


''[https://youtu.be/Z7rd04KzLcg?t=5978 01:39:38]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=5978 01:39:38]''<br>
'''Eric Weinstein:''' Three-plus-i.
'''Eric Weinstein:''' \(3 + i\).


''[https://youtu.be/Z7rd04KzLcg?t=5983 01:39:43]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=5983 01:39:43]''<br>
Line 605: Line 604:




<div style="text-align: center; margin-left: auto; margin-right: auto;">$$ \bigcirc\kern-0.940em\circ\kern-0.58em·\text{}\kern0.3em_\varepsilon F_\pi +[\bigcirc\kern-0.940em\circ\kern-0.58em·\text{}\kern0.3em_\varepsilon T_\omega, T_{\varepsilon, \pi}] + *T_{\varepsilon, \pi} = 0 $$</div>
<div style="text-align: center; margin-left: auto; margin-right: auto;">$$ \bigcirc\kern-0.940em\circ\kern-0.58em·\text{}\kern0.3em_\varepsilon F_\pi +[\bigcirc\kern-0.940em\circ\kern-0.58em·\text{}\kern0.3em_\varepsilon T_{\varepsilon,\eta}, T_{\varepsilon, \pi}] + *T_{\varepsilon, \pi} = 0 $$</div>




Line 611: Line 610:
In other words, there is a spinorial analog of the Weyl curvature, a spinorial analog of the traceless Ricci curvature, and a spinorial analog of the scalar curvature. This operator should shear off the analog of the Weyl curvature just the way the Einstein's projection shears off the Weyl curvature when you're looking at the tangent bundle. And this term, which is now gauge invariant, may be considered as containing a piece that looks like \(\Lambda g_{\mu \nu}\), or a cosmological constant, and this piece here can be made to contain a piece that looks like Einstein's tensor, and so this looks very much like the vacuum field equations. But we have to add in something else. I'll be a little bit vague 'cause I'm still giving myself some freedom as we write this up.
In other words, there is a spinorial analog of the Weyl curvature, a spinorial analog of the traceless Ricci curvature, and a spinorial analog of the scalar curvature. This operator should shear off the analog of the Weyl curvature just the way the Einstein's projection shears off the Weyl curvature when you're looking at the tangent bundle. And this term, which is now gauge invariant, may be considered as containing a piece that looks like \(\Lambda g_{\mu \nu}\), or a cosmological constant, and this piece here can be made to contain a piece that looks like Einstein's tensor, and so this looks very much like the vacuum field equations. But we have to add in something else. I'll be a little bit vague 'cause I'm still giving myself some freedom as we write this up.


[[File:GI-Exact.jpg|center]]
[[File:GI-Exact-3.jpg|center]]


''[https://youtu.be/Z7rd04KzLcg?t=6325 01:45:25]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=6325 01:45:25]''<br>
Line 628: Line 627:


''[https://youtu.be/Z7rd04KzLcg?t=6421 01:47:01]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=6421 01:47:01]''<br>
Let's define matter content in the form of Omega-0 tensored in the spinors, which is a fancy way of saying spinors, together with a copy of the one-forms tensored in the spinors. And let me come up with two other copies of the same data—so I'll make \(\Omega^{d-1}\) just by duality, so imagine that there's a Hodge star operator.
Let's define matter content in the form of \(\Omega^0\) tensored in the spinors, which is a fancy way of saying spinors, together with a copy of the 1-forms tensored in the spinors. And let me come up with two other copies of the same data—so I'll make \(\Omega^{d-1}\) just by duality, so imagine that there's a Hodge star operator.


[[File:InitialOmegaDiagram.jpg|center]]
[[File:InitialOmegaDiagram.jpg|center]]
Line 646: Line 645:


''[https://youtu.be/Z7rd04KzLcg?t=6584 01:49:44]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=6584 01:49:44]''<br>
So in one case, I can do plus star to pick up the \(A_{\pi}\). But I am also going to have a derivative operator if I just do a star operation, so I need another derivative operator to kill it off here. So I'm going to take minus the derivative with respect to the connection, which defines a connection one-form as well as having the same derivative coming from the Levi-Civita connection on \(U\).
So in one case, I can do plus star to pick up the \(A_{\pi}\). But I am also going to have a derivative operator if I just do a star operation, so I need another derivative operator to kill it off here. So I'm going to take minus the derivative with respect to the connection, which defines a connection 1-form as well as having the same derivative coming from the Levi-Civita connection on \(U\).


[[File:OmegaDiagramMorePartlyLabelled2.jpg|center]]
[[File:OmegaDiagramMorePartlyLabelled2.jpg|center]]


''[https://youtu.be/Z7rd04KzLcg?t=6615 01:50:15]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=6615 01:50:15]''<br>
So in other words, I have two derivative operators here. I have two ad-value one-forms. The difference between them has been to be a zeroth-order, and it's going to be precisely the augmented torsion. And that's the same game I'm going to repeat here.
So in other words, I have two derivative operators here. I have two ad-value 1-forms. The difference between them has been to be a zeroth-order, and it's going to be precisely the augmented torsion. And that's the same game I'm going to repeat here.


[[File:OmegaDiagramTopLabelled.jpg|center]]
[[File:OmegaDiagramTopLabelled.jpg|center]]
Line 669: Line 668:
Well, that's pretty good, if true. Can you go farther? Well, look at how close to this field content is to the picture from deformation theory that we learned about in low dimensions. The low-dimensional world works by saying that symmetries map to field content map to equations, usually in the curvature.
Well, that's pretty good, if true. Can you go farther? Well, look at how close to this field content is to the picture from deformation theory that we learned about in low dimensions. The low-dimensional world works by saying that symmetries map to field content map to equations, usually in the curvature.


[[File:GU Presentation Sym-Fld-Eq Diagram.png|center]]
[[File:Sym-Fld-Eq.jpg|center]]


''[https://youtu.be/Z7rd04KzLcg?t=6774 01:52:54]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=6774 01:52:54]''<br>
Line 787: Line 786:


''[https://youtu.be/Z7rd04KzLcg?t=7716 02:08:36]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=7716 02:08:36]''<br>
We then choose to add some stuff that we can't see at all, that's dark. And this matter would be governed by forces that were dark too. There might be dark electromagnetism, and dark strong, and dark weak. It might be that things break in that sector completely differently, and it doesn't break down to an \(SU(3) \times SU(2) \times U(1)\) because these are different \(SU(3)\)s, \(SU(2)\)s, and \(U(1)\)s, and it may be that there would be like a high energy \(SU(5)\), or some Pati-Salam model. Imagine then that chirality was not fundamental, but it was emergent—that you had some complex, and as long as there were cross terms these two halves would talk to each other. But if the cross terms went away, the two terms would become decoupled.
We then choose to add some stuff that we can't see at all, that's dark. And this matter would be governed by forces that were dark too. There might be dark electromagnetism, and dark strong, and dark weak. It might be that things break in that sector completely differently, and it doesn't break down to an \(\text{SU}(3) \times \text{SU}(2) \times \text{U}(1)\) because these are different \(\text{SU}(3)\)s, \(\text{SU}(2)\)s, and \(\text{U}(1)\)s, and it may be that there would be like a high energy \(\text{SU}(5)\), or some Pati-Salam model. Imagine then that chirality was not fundamental, but it was emergent—that you had some complex, and as long as there were cross terms these two halves would talk to each other. But if the cross terms went away, the two terms would become decoupled.


''[https://youtu.be/Z7rd04KzLcg?t=7762 02:09:22]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=7762 02:09:22]''<br>
Line 798: Line 797:


''[https://youtu.be/Z7rd04KzLcg?t=7867 02:11:07]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=7867 02:11:07]''<br>
So in other words, just to recap, starting with nothing other than a four-manifold, we built a bundle \(U\). The bundle \(U\) had no metric, but it almost had a metric. It had a metric up to a connection. There was another bundle on top of that bundle called the chimeric bundle. The chimeric bundle had an intrinsic metric. We built our spinors on that. We restricted ourselves to those spinors. We moved most of our attention to the emergent metric on \(U^{14}\), which gave us a map between the chimeric bundle and the tangent bundle of \(U^{14}\). We built a toolkit, allowing us to choose symmetric field content, to define equations of motion on the cotangent space of that field content, to form a homogeneous vector bundle with the fermions, to come up with unifications of the Einstein field equations, Yang-Mills equations, and Dirac equations. We then broke those things apart under decomposition, pulling things back from \(U^{14}\), and we found a three-generation model where nothing has been put in by hand, and we have a 10-dimensional normal component, which looks like the \(Spin(10)\) theory.
So in other words, just to recap, starting with nothing other than a four-manifold, we built a bundle \(U\). The bundle \(U\) had no metric, but it almost had a metric. It had a metric up to a connection. There was another bundle on top of that bundle called the chimeric bundle. The chimeric bundle had an intrinsic metric. We built our spinors on that. We restricted ourselves to those spinors. We moved most of our attention to the emergent metric on \(U^{14}\), which gave us a map between the chimeric bundle and the tangent bundle of \(U^{14}\). We built a toolkit, allowing us to choose symmetric field content, to define equations of motion on the cotangent space of that field content, to form a homogeneous vector bundle with the fermions, to come up with unifications of the Einstein field equations, Yang-Mills equations, and Dirac equations. We then broke those things apart under decomposition, pulling things back from \(U^{14}\), and we found a three-generation model where nothing has been put in by hand, and we have a 10-dimensional normal component, which looks like the \(\text{Spin}(10)\) theory.


''[https://youtu.be/Z7rd04KzLcg?t=7954 02:12:34]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=7954 02:12:34]''<br>
Line 829: Line 828:


''[https://youtu.be/Z7rd04KzLcg?t=8283 02:18:03]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=8283 02:18:03]''<br>
Now there's a huge problem in the spinorial sector, which I don't know why more people don't worry about, which is that spinors aren't defined for representations of the double cover of \(GL(4, \mathbb{R})\), the general linear group's effective spin analog. And as such, if we imagine that we will one day quantize gravity, we will lose our definition, not of the electrons but, let's say, of the medium in which the electrons operate. That is, there will be no spinorial bundle until we have an observation of a metric. So, one thing we can do is to take a manifold \(X^d\) as the starting point and see if we can create an entire universe from no other data—not even with a metric. So, since we don't choose a metric, what we instead do is to work over the space of all possible point-wise metrics. So not quite in the Feynman sense, but in the sense that we will work over a bundle that is of a quite larger, quite a bit larger dimension.
Now there's a huge problem in the spinorial sector, which I don't know why more people don't worry about, which is that spinors aren't defined for representations of the double cover of \(\text{GL}(4, \mathbb{R})\), the general linear group's effective spin analog. And as such, if we imagine that we will one day quantize gravity, we will lose our definition, not of the electrons but, let's say, of the medium in which the electrons operate. That is, there will be no spinorial bundle until we have an observation of a metric. So, one thing we can do is to take a manifold \(X^d\) as the starting point and see if we can create an entire universe from no other data—not even with a metric. So, since we don't choose a metric, what we instead do is to work over the space of all possible point-wise metrics. So not quite in the Feynman sense, but in the sense that we will work over a bundle that is of a quite larger, quite a bit larger dimension.


''[https://youtu.be/Z7rd04KzLcg?t=8349 02:19:09]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=8349 02:19:09]''<br>
So for example, if \(X\) was four-dimensional, therefore d equals 4, then \(Y\) in this case would be \(d^2\), which would be 16 plus 3d, which would be 12, making 28, divided by two, which would be 14. So in other words, a four-dimensional proto-spacetime—not a spacetime, but a proto-spacetime with no metric—would give rise to a 14-dimensional observerse portion called \(Y\). Now I believe that in the lecture in Oxford I called that \(U\), so I'm sorry for the confusion, but of course, this shifts around every time I take it out of the garage, and that's one of the problems with working on a theory in solitude for many years.
So for example, if \(X\) was four-dimensional, therefore d equals 4, then \(Y\) in this case would be \(d^2\), which would be \(16 + 3d\), which would be 12, making 28, divided by two, which would be 14. So in other words, a four-dimensional proto-spacetime—not a spacetime, but a proto-spacetime with no metric—would give rise to a 14-dimensional observerse portion called \(Y\). Now I believe that in the lecture in Oxford I called that \(U\), so I'm sorry for the confusion, but of course, this shifts around every time I take it out of the garage, and that's one of the problems with working on a theory in solitude for many years.


''[https://youtu.be/Z7rd04KzLcg?t=8397 02:19:57]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=8397 02:19:57]''<br>
Line 843: Line 842:


''[https://youtu.be/Z7rd04KzLcg?t=8467 02:21:07]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=8467 02:21:07]''<br>
Most fields—and in this case we're going to call the collection of two-tuples \(\omega\), so inside of \(\omega\) that will be, in the first tuple we'll have \(Ï”\) and \(ϖ\), written in sort of a nontraditional variation of how we write this symbol for \(\pi\); in the second tuple, we'll have the letters, \(\nu\) and \(\zeta\), and I would like them not to move because they honor particular people who are important. So most fields, in this case \(\omega\), are dancing on \(Y\), which was called \(U\) in the lecture, unfortunately. But, they are observed via pullback as if they lived on \(X\). In other words, if you're sitting in the stands, you might feel that you're actually literally on the pitch, even though that's not true. So what we've done is we've taken the U of Wheeler, we've put it on its back, and created a double-U structure.
Most fields—and in this case we're going to call the collection of 2-tuples \(\omega\), so inside of \(\omega\) that will be, in the first tuple we'll have \(Ï”\) and \(ϖ\), written in sort of a nontraditional variation of how we write this symbol for \(\pi\); in the second tuple, we'll have the letters, \(\nu\) and \(\zeta\), and I would like them not to move because they honor particular people who are important. So most fields, in this case \(\omega\), are dancing on \(Y\), which was called \(U\) in the lecture, unfortunately. But, they are observed via pullback as if they lived on \(X\). In other words, if you're sitting in the stands, you might feel that you're actually literally on the pitch, even though that's not true. So what we've done is we've taken the U of Wheeler, we've put it on its back, and created a double-U structure.


''[https://youtu.be/Z7rd04KzLcg?t=8519 02:21:59]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=8519 02:21:59]''<br>
Line 859: Line 858:


''[https://youtu.be/Z7rd04KzLcg?t=8632 02:23:52]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=8632 02:23:52]''<br>
So, there is one way in which we've reversed the fundamental theorem of Riemannian geometry, where a connection on \(X\) leads to a metric on \(Y\). So if we do the full transmission mechanism out, \(ℷ\) on \(X\) leads to \(\aleph_ℷ\) for the Levi-Civita connection on \(X\). \(\aleph_{ℷ}\) leads to \(g_{\aleph}\), which is—sorry, \(g_\aleph\). I'm not used to using Hebrew in math.* So \(g_{\aleph}\), then, is a metric on \(Y\), and that creates a Levi-Civita connection of the metric on the space \(Y\) as well, which then induces one on the spinorial bundles. In sector II, the inhomogeneous gauge group on \(Y\) replaces the PoincarĂ© group and the internal symmetries that are found on \(X\). And in fact, you use a fermionic extension of the inhomogeneous gauge group to replace the supersymmetric PoincarĂ© group, and that would be with the field content zero forms tensored with spinors direct sum one-forms tensored with spinors all up on \(Y\) as the fermionic field content.
So, there is one way in which we've reversed the fundamental theorem of Riemannian geometry, where a connection on \(X\) leads to a metric on \(Y\). So if we do the full transmission mechanism out, \(ℷ\) on \(X\) leads to \(\aleph_ℷ\) for the Levi-Civita connection on \(X\). \(\aleph_{ℷ}\) leads to \(g_{\aleph}\), which is—sorry, \(g_\aleph\). I'm not used to using Hebrew in math.* So \(g_{\aleph}\), then, is a metric on \(Y\), and that creates a Levi-Civita connection of the metric on the space \(Y\) as well, which then induces one on the spinorial bundles. In sector II, the inhomogeneous gauge group on \(Y\) replaces the PoincarĂ© group and the internal symmetries that are found on \(X\). And in fact, you use a fermionic extension of the inhomogeneous gauge group to replace the supersymmetric PoincarĂ© group, and that would be with the field content 0-forms tensored with spinors direct sum 1-forms tensored with spinors all up on \(Y\) as the fermionic field content.


''* Note: Where Eric mistakes ''\(\alpha\)'' for ''\(\aleph\)'' it is written correctly in the transcript for the sake of clarity and parity with the diagram.''
''* Note: Where Eric mistakes ''\(\alpha\)'' for ''\(\aleph\)'' it is written correctly in the transcript for the sake of clarity and parity with the diagram.''


''[https://youtu.be/Z7rd04KzLcg?t=8709 02:25:09]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=8709 02:25:09]''<br>
So that gets rid of the biggest problem, because the internal symmetry group is what causes the failure, I think, of supersymmetric particles to be seen in nature, which is we have two different origin stories, which is a little bit like Lilith and Genesis. We can't easily say we have a unified theory if spacetime and the \(SU(3) \times SU(2) \times U(1)\) group that lives on spacetime have different origins and cannot be related. In this situation, we tie our hands and we have no choice over the group content.
So that gets rid of the biggest problem, because the internal symmetry group is what causes the failure, I think, of supersymmetric particles to be seen in nature, which is we have two different origin stories, which is a little bit like Lilith and Genesis. We can't easily say we have a unified theory if spacetime and the \(\text{SU}(3) \times \text{SU}(2) \times \text{U}(1)\) group that lives on spacetime have different origins and cannot be related. In this situation, we tie our hands and we have no choice over the group content.


[[File:GU Presentation Powerpoint Bundle Notation Slide.png|center]]
[[File:GU Presentation Powerpoint Bundle Notation Slide.png|center]]
Line 874: Line 873:


''[https://youtu.be/Z7rd04KzLcg?t=8783 02:26:23]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=8783 02:26:23]''<br>
So with function spaces, we can take the bundle of groups using the adjoint action of \(H\) on itself and form the associated bundle, and then move to \(C^\infty\) sections to get the so-called gauge group of automorphisms. We have a space of connections, typically denoted by \(A\), and we're going to promote \(\Omega^1(B,\text{ ad}(P_H))\) to a notation of script \(\mathcal{N}\) as the affine group, which acts directly on the space of connections.
So with function spaces, we can take the bundle of groups using the adjoint action of \(H\) on itself and form the associated bundle, and then move to \(C^\infty\) sections to get the so-called gauge group of automorphisms. We have a space of connections, typically denoted by \(\mathcal{A}\), and we're going to promote \(\Omega^1(B,\text{ ad}(P_H))\) to a notation of script \(\mathcal{N}\) as the affine group, which acts directly on the space of connections.


[[File:GU Presentation Powerpoint Inhomogeneous Gauge Group Slide.png|center]]
[[File:GU Presentation Powerpoint Inhomogeneous Gauge Group Slide.png|center]]
Line 884: Line 883:


''[https://youtu.be/Z7rd04KzLcg?t=8847 02:27:27]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=8847 02:27:27]''<br>
And then we have an action of \(G\), that is the inhomogeneous gauge group, on the space of connections, because we have two different ways to act on connections. We can either act by gauge transformations or we can act by affine translations. So putting them together gives us something for the inhomogeneous gauge group to do.
And then we have an action of \(\mathcal{G}\), that is the inhomogeneous gauge group, on the space of connections, because we have two different ways to act on connections. We can either act by gauge transformations or we can act by affine translations. So putting them together gives us something for the inhomogeneous gauge group to do.


[[File:GU Presentation Powerpoint Bi-Connection-1 Slide.png|center]]
[[File:GU Presentation Powerpoint Bi-Connection-1 Slide.png|center]]
Line 895: Line 894:


''[https://youtu.be/Z7rd04KzLcg?t=8922 02:28:42]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=8922 02:28:42]''<br>
So our summary diagram looks something like this. Take a look at the \(\tau_{A_0}\). We will find a homomorphism of the gauge group into its inhomogeneous extension that isn't simply inclusion under the first factor. We—and I'm realizing that I have the wrong pi projection, that should just be a simple \(\pi\) projecting down. We have a map from the inhomogeneous gauge group via the bi-connection to \(A \times A\), connections cross connections, and that behaves well according to the difference operator \(\delta\) that takes the difference of two connections and gives an honest ad-valued one-form.
So our summary diagram looks something like this. Take a look at the \(\tau_{A_0}\). We will find a homomorphism of the gauge group into its inhomogeneous extension that isn't simply inclusion under the first factor. We—and I'm realizing that I have the wrong pi projection, that should just be a simple \(\pi\) projecting down. We have a map from the inhomogeneous gauge group via the bi-connection to \(A \times A\), connections cross connections, and that behaves well according to the difference operator \(\delta\) that takes the difference of two connections and gives an honest ad-valued 1-form.


[[File:GU Presentation Powerpoint Infinitesimal Action Slide.png|center]]
[[File:GU Presentation Powerpoint Infinitesimal Action Slide.png|center]]
Line 919: Line 918:


''[https://youtu.be/Z7rd04KzLcg?t=9094 02:31:34]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=9094 02:31:34]''<br>
We then get to shiab operators. Now, a '''shiab operator''' is a map from the group crossed the ad-valued i-forms. In this case, the particular shiab operator we're interested in is mapping i-forms to d-minus-three-plus-i-forms. So for example, you would map a two-form to d-minus-three-plus-i. So if d, for example, were 14, and i were equal to two, then 14 minus three is equal to 11 plus two is equal to 13. So that would be an ad-valued 14-minus-one-form, which is exactly the right place for something to form a current, that is, the differential of a Lagrangian on the space.
We then get to shiab operators. Now, a '''shiab operator''' is a map from the group crossed the ad-valued \(i\)-forms. In this case, the particular shiab operator we're interested in is mapping \(i\)-forms to \((d - 3 + i)\)-forms. So for example, you would map a 2-form to \((d - 3 + i)\). So if \(d\), for example, were 14, and i were equal to 2, then 14 minus 3 is equal to 11 plus 2 is equal to 13. So that would be an ad-valued \((14 - 1)\)-form, which is exactly the right place for something to form a current, that is, the differential of a Lagrangian on the space.


[[File:GU Presentation Powerpoint Augmented Torsion-1 Slide.png|center]]
[[File:GU Presentation Powerpoint Augmented Torsion-1 Slide.png|center]]
Line 998: Line 997:


''[https://youtu.be/Z7rd04KzLcg?t=9740 02:42:20]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=9740 02:42:20]''<br>
And I should say that the Pati-Salam theory, which is usually advertised as, I think as \(SU(4) \times SU(2) \times SU(2)\), is really much more naturally \(Spin(6) \times Spin(4)\) when the trace portion of the space of metrics is put in with the proper sign if you're trying to generate the sector that begins as \(X(1,3)\). Remember \(X^d\), where \(d = 4\), is the generic situation. But you have all these different sectors. I believe that these sectors probably exist if this model's correct, but we are trapped in the \((1,3)\) sector, so you have to figure out what the implications are for pushing that indefinite signature up into an indefinite signature on the \(Y\) manifold. And, there are signatures that make it look like the Pati-Salam rather than directly in the \(Spin(10)\), \(SU(5)\) line of thinking.
And I should say that the Pati-Salam theory, which is usually advertised as, I think as \(\text{SU}(4) \times \text{SU}(2) \times \text{SU}(2)\), is really much more naturally \(\text{Spin}(6) \times \text{Spin}(4)\) when the trace portion of the space of metrics is put in with the proper sign if you're trying to generate the sector that begins as \(X(1,3)\). Remember \(X^d\), where \(d = 4\), is the generic situation. But you have all these different sectors. I believe that these sectors probably exist if this model's correct, but we are trapped in the \((1,3)\) sector, so you have to figure out what the implications are for pushing that indefinite signature up into an indefinite signature on the \(Y\) manifold. And, there are signatures that make it look like the Pati-Salam rather than directly in the \(\text{Spin}(10)\), \(\text{SU}(5)\) line of thinking.


=== Closing Thoughts ===
=== Closing Thoughts ===
Line 1,008: Line 1,007:


''[https://youtu.be/Z7rd04KzLcg?t=9826 02:43:46]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=9826 02:43:46]''<br>
Marcus du Sautoy, Peter Thiel, Isadore Singer, Raoul Bott, Michael Grossberg, Adil Abdulali, Harry and Sophie Rubin, Bret Weinstein and family, Heather Heying, and Zach and Toby, Peter Freyd, Scott Axlerod, Nima Arkani Hamed, Luis Alvarez Gaume, Edward Frankel, Dror Bar Natan, Shlomo Sternberg, David Kazhdan, Daniel Barcay, Karen and Les Weinstein, Haynes Miller, Ralph Gomory, John Tate, Sidney Coleman, Graeme Segal, Robert Hermann, and Hira and Esther Malaney.
Marcus du Sautoy, Peter Thiel, Isadore Singer, Raoul Bott, Michael Grossberg, Adil Abdulali, Harry and Sophie Rubin, Bret Weinstein and family, Heather Heying, and Zach and Toby, Peter Freyd, Scott Axlerod, Nima Arkani-Hamed, Luis Alvarez Gaume, Edward Frankel, Dror Bar-Natan, Shlomo Sternberg, David Kazhdan, Daniel Barcay, Karen and Les Weinstein, Haynes Miller, Ralph Gomory, John Tate, Sidney Coleman, Graeme Segal, Robert Hermann, and Hira and Esther Malaney.


''[https://youtu.be/Z7rd04KzLcg?t=9859 02:44:19]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=9859 02:44:19]''<br>
Line 1,020: Line 1,019:


''[https://youtu.be/Z7rd04KzLcg?t=9888 02:44:48]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=9888 02:44:48]''<br>
I do want to leave you with one thought. I really think that we've gotten completely bent out of shape about trying to formalize and routinize science, and it doesn't work. You cannot mandate science as social engineering, you can't decide that science is always in the zeitgeist and done by committee. In fact, it is essential to understand that science will not conform to what you want. One of the things that I'm very proud of, and I think is quite true, is the saying that great science has the scientific method as its radio edit. I don't think that great science is actually done the way we say it's done, and I think that <a href="https://blogs.scientificamerican.com/guest-blog/the-evolution-of-the-physicists-picture-of-nature/">Dirac's 1963 Scientific American article</a> should be read by absolutely everyone.
I do want to leave you with one thought. I really think that we've gotten completely bent out of shape about trying to formalize and routinize science, and it doesn't work. You cannot mandate science as social engineering, you can't decide that science is always in the zeitgeist and done by committee. In fact, it is essential to understand that science will not conform to what you want. One of the things that I'm very proud of, and I think is quite true, is the saying that great science has the scientific method as its radio edit. I don't think that great science is actually done the way we say it's done, and I think that [https://blogs.scientificamerican.com/guest-blog/the-evolution-of-the-physicists-picture-of-nature/ Dirac's 1963 Scientific American article] should be read by absolutely everyone.


''[https://youtu.be/Z7rd04KzLcg?t=9936 02:45:36]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=9936 02:45:36]''<br>