Fibonacci numbers: Difference between revisions

From The Portal Wiki
(Created page with "<div class="floatright" style="text-align: center"> center|class=shadow|300px </div> == Resources: == *[https://en.wikipedia.org/wiki/Golde...")
 
(Initial Stub)
Line 1: Line 1:
<div class="floatright" style="text-align: center">
<div style="text-align: center; padding-right: 300">
[[File:Goldenratio_fibonacci.png|center|class=shadow|300px]]
[[File:34 21-FibonacciBlocks.png|right|300px|thumb|A tiling with squares whose side lengths are successive Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13 and 21.]]
</div>
</div>
In mathematics, the '''Fibonacci numbers''', commonly denoted <math>F_n</math>, form a sequence, called the '''Fibonacci sequence''', such that each number is the sum of the two preceding ones, starting from 0 and 1. That is,
:<math>F_0=0,\quad F_1= 1,</math>
and
:<math>F_n=F_{n-1} + F_{n-2},</math>
for <math>n > 1</math>.
The beginning of the sequence is thus:
:<math>0,\;1,\;1,\;2,\;3,\;5,\;8,\;13,\;21,\;34,\;55,\;89,\;144,\; \ldots</math>


== Resources: ==
== Resources: ==

Revision as of 03:07, 2 May 2020

A tiling with squares whose side lengths are successive Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13 and 21.

In mathematics, the Fibonacci numbers, commonly denoted [math]\displaystyle{ F_n }[/math], form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0 and 1. That is,

[math]\displaystyle{ F_0=0,\quad F_1= 1, }[/math]

and

[math]\displaystyle{ F_n=F_{n-1} + F_{n-2}, }[/math]

for [math]\displaystyle{ n \gt 1 }[/math].

The beginning of the sequence is thus:

[math]\displaystyle{ 0,\;1,\;1,\;2,\;3,\;5,\;8,\;13,\;21,\;34,\;55,\;89,\;144,\; \ldots }[/math]

Resources:

Discussion: