Calculus (Book): Difference between revisions
(Created page with "{{subst::Basic Mathematics (Book)}}") Â |
No edit summary |
||
Line 1: | Line 1: | ||
{{Stub}} | {{Stub}} | ||
{{InfoboxBook | {{InfoboxBook | ||
|title= | |title=Calculus | ||
|image=[[File: | |image=[[File:Apostol Calculus V1 Cover.jpg]] | ||
|author=[https://en.wikipedia.org/wiki/ | |author=[https://en.wikipedia.org/wiki/Tom_M._Apostol Tom Apostol] | ||
|language=English | |language=English | ||
|series= | |series= | ||
|genre= | |genre= | ||
|publisher= | |publisher=Wiley | ||
|publicationdate= | |publicationdate=16 January 1991 | ||
|pages= | |pages=666 | ||
|isbn10= | |isbn10=0471000051 | ||
|isbn13=978- | |isbn13=978-0471000051 | ||
}} | }} | ||
The textbook ''''' | The textbook '''''Calculus''''' by [https://en.wikipedia.org/wiki/Tom_M._Apostol Tom Apostol] introduces calculus. Â | ||
 | |||
== Table of Contents == | == Table of Contents == | ||
Line 23: | Line 21: | ||
! Chapter/Section # !! Title !! Page # | ! Chapter/Section # !! Title !! Page # | ||
|- Â | |- Â | ||
! colspan="3" | | ! colspan="3" | I. INTRODUCTION | ||
|- | |- | ||
! colspan="3" | | ! colspan="3" | Part 1: Historical Introduction | ||
|- | |- | ||
| 1 || The | | I 1.1 || The two basic concepts of calculus || 1 | ||
|- | |- | ||
| 2 || | | I 1.2 || Historical background || 2 | ||
|- | |- | ||
| 3 || | | I 1.3 || The method of exhaustion for the area of a parabolic segment || 3 | ||
|- | |- | ||
| 4 || | | <nowiki>*</nowiki>I 1.4 || Exercises || 8 | ||
|- | |- | ||
| 5 || Rational numbers || | | I 1.5 || Rational numbers || 8 | ||
|- | |- | ||
| 6 || Multiplicative inverses || | | I 1.6 || Multiplicative inverses || 10 | ||
|- Â | |- Â | ||
! colspan="3" | Chapter 2: Linear Equations | ! colspan="3" | Chapter 2: Linear Equations |
Revision as of 15:17, 20 September 2021
Calculus | |
Information | |
---|---|
Author | Tom Apostol |
Language | English |
Publisher | Wiley |
Publication Date | 16 January 1991 |
Pages | 666 |
ISBN-10 | 0471000051 |
ISBN-13 | 978-0471000051 |
The textbook Calculus by Tom Apostol introduces calculus.
Table of Contents
Chapter/Section # | Title | Page # |
---|---|---|
I. INTRODUCTION | ||
Part 1: Historical Introduction | ||
I 1.1 | The two basic concepts of calculus | 1 |
I 1.2 | Historical background | 2 |
I 1.3 | The method of exhaustion for the area of a parabolic segment | 3 |
*I 1.4 | Exercises | 8 |
I 1.5 | Rational numbers | 8 |
I 1.6 | Multiplicative inverses | 10 |
Chapter 2: Linear Equations | ||
1 | Equations in two unknowns | 53 |
2 | Equations in three unknowns | 57 |
Chapter 3: Real Numbers | ||
1 | Addition and multiplication | 61 |
2 | Real numbers: positivity | 64 |
3 | Powers and roots | 70 |
4 | Inequalities | 75 |
Chapter 4: Quadratic Equations | ||
Interlude: On Logic and Mathematical Expressions | ||
1 | On reading books | 93 |
2 | Logic | 94 |
3 | Sets and elements | 99 |
4 | Notation | 100 |
PART II: INTUITIVE GEOMETRY | ||
Chapter 5: Distance and Angles | ||
1 | Distance | 107 |
2 | Angles | 110 |
3 | The Pythagoras theorem | 120 |
Chapter 6: Isometries | ||
1 | Some standard mappings of the plane | 133 |
2 | Isometries | 143 |
3 | Composition of isometries | 150 |
4 | Inverse of isometries | 155 |
5 | Characterization of isometries | 163 |
6 | Congruences | 166 |
Chapter 7: Area and Applications | ||
1 | Area of a disc of radius r | 173 |
2 | Circumference of a circle of radius r | 180 |
PART III: COORDINATE GEOMETRY | ||
Chapter 8: Coordinates and Geometry | ||
1 | Coordinate systems | 191 |
2 | Distance between points | 197 |
3 | Equation of a circle | 203 |
4 | Rational points on a circle | 206 |
Chapter 9: Operations on Points | ||
1 | Dilations and reflections | 213 |
2 | Addition, subtraction, and the parallelogram law | 218 |
Chapter 10: Segments, Rays, and Lines | ||
1 | Segments | 229 |
2 | Rays | 231 |
3 | Lines | 236 |
4 | Ordinary equation for a line | 246 |
Chapter 11: Trigonometry | ||
1 | Radian measure | 249 |
2 | Sine and cosine | 252 |
3 | The graphs | 264 |
4 | The tangent | 266 |
5 | Addition formulas | 272 |
6 | Rotations | 277 |
Chapter 12: Some Analytic Geometry | ||
1 | The straight line again | 281 |
2 | The parabola | 291 |
3 | The ellipse | 297 |
4 | The hyperbola | 300 |
5 | Rotation of hyperbolas | 305 |
PART IV: MISCELLANEOUS | ||
Chapter 13: Functions | ||
1 | Definition of a function | 313 |
2 | Polynomial functions | 318 |
3 | Graphs of functions | 330 |
4 | Exponential function | 333 |
5 | Logarithms | 338 |
Chapter 14: Mappings | ||
1 | Definition | 345 |
2 | Formalism of mappings | 351 |
3 | Permutations | 359 |
Chapter 15: Complex Numbers | ||
1 | The complex plane | 375 |
2 | Polar form | 380 |
Chapter 16: Induction and Summations | ||
1 | Induction | 383 |
2 | Summations | 388 |
3 | Geometric series | 396 |
Chapter 17: Determinants | ||
1 | Matrices | 401 |
2 | Determinants of order 2 | 406 |
3 | Properties of 2 x 2 determinants | 409 |
4 | Determinants of order 3 | 414 |
5 | Properties of 3 x 3 determinants | 418 |
6 | Cramer's Rule | 424 |
Index | 429 |