Calculus (Book): Difference between revisions
No edit summary |
No edit summary |
||
Line 291: | Line 291: | ||
! colspan="3" | 5. THE RELATION BETWEEN INTEGRATION AND DIFFERENTIATION | ! colspan="3" | 5. THE RELATION BETWEEN INTEGRATION AND DIFFERENTIATION | ||
|- | |- | ||
| 1 || | | 5.1 || The derivative of an indefinite integral. The first fundamental theorem of calculus || 202 | ||
|- | |- | ||
| 2 || | | 5.2 || The zero-derivative theorem || 204 | ||
|- | |- | ||
| 3 || | | 5.3 || Primitive functions and the second fundamental theorem of calculus || 205 | ||
|- | |- | ||
| 4 || | | 5.4 || Properties of a function deduced from properties of its derivative || 207 | ||
|- | |- | ||
| 5.5 || Exercises || 208 | |||
|- | |- | ||
| | | 5.6 || The Leibniz notation for primitives || 210 | ||
|- | |- | ||
| | | 5.7 || Integration by substitution || 212 | ||
|- | |||
| 5.8 || Exercises || 216 | |||
|- | |||
| 5.9 || Integration by parts || 217 | |||
|- | |||
| 5.10 || Exercises || 220 | |||
|- | |||
| 5.11 || Miscellaneous review exercises || 222 | |||
|- | |||
! colspan="3" | 6. THE LOGARITHM, THE EXPONENTIAL, AND THE INVERSE TRIGONOMETRIC FUNCTIONS | |||
|- | |||
| 6.1 || Introduction || 226 | |||
|- | |||
| 6.2 || Motivation for the definition of the natural logarithm as an integral || 227 | |||
|- | |||
| 6.3 || The definition of the logarithm. Basic properties || 226 | |||
|- | |||
| 6.4 || The graph of the natural logarithm || 226 | |||
|- | |||
| 6.5 || Consequences of the functional equation L(ab) = L(a) + L(b) || 226 | |||
|- | |||
| 6.6 || Logarithms referred to any positive base \(b \ne 1\) || 226 | |||
|- | |||
| 6.7 || Introduction || 226 | |||
|- | |||
| 6.8 || Introduction || 226 | |||
|- | |||
| 6.9 || Introduction || 226 | |||
|- | |||
| 6.10 || Introduction || 226 | |||
|- | |||
| 6.11 || Introduction || 226 | |||
|- | |||
| 6.12 || Introduction || 226 | |||
|- | |||
| 6.13 || Introduction || 226 | |||
|- | |||
| 6.14 || Introduction || 226 | |||
|- | |||
| 6.15 || Introduction || 226 | |||
|- | |||
| 6.16 || Introduction || 226 | |||
|- | |||
| 6.17 || Introduction || 226 | |||
|- | |||
| 6.18 || Introduction || 226 | |||
|- | |||
| 6.19 || Introduction || 226 | |||
|- | |||
| 6.20 || Introduction || 226 | |||
|- | |||
| 6.21 || Introduction || 226 | |||
|- | |||
| 6.22 || Introduction || 226 | |||
|- | |||
| 6.23 || Introduction || 226 | |||
|- | |||
| 6.24 || Introduction || 226 | |||
|- | |||
| 6.25 || Exercises || 267 | |||
|- | |||
| 6.26 || Miscellaneous review exercises || 268 | |||
|- | |- | ||
! colspan="3" | Chapter 10: Segments, Rays, and Lines | ! colspan="3" | Chapter 10: Segments, Rays, and Lines |
Revision as of 16:19, 20 September 2021
Calculus | |
Information | |
---|---|
Author | Tom Apostol |
Language | English |
Publisher | Wiley |
Publication Date | 16 January 1991 |
Pages | 666 |
ISBN-10 | 0471000051 |
ISBN-13 | 978-0471000051 |
The textbook Calculus by Tom Apostol introduces calculus.
Table of Contents
Chapter/Section # | Title | Page # |
---|---|---|
I. INTRODUCTION | ||
Part 1: Historical Introduction | ||
I 1.1 | The two basic concepts of calculus | 1 |
I 1.2 | Historical background | 2 |
I 1.3 | The method of exhaustion for the area of a parabolic segment | 3 |
*I 1.4 | Exercises | 8 |
I 1.5 | A critical analysis of the Archimedes' method | 8 |
I 1.6 | The approach to calculus to be used in this book | 10 |
Part 2: Some Basic Concepts of the Theory of Sets | ||
I 2.1 | Introduction to set theory | 11 |
I 2.2 | Notations for designating sets | 12 |
I 2.3 | Subsets | 12 |
I 2.4 | Unions, intersections, complements | 13 |
I 2.5 | Exercises | 15 |
Part 3: A set of Axioms for the Real-Number System | ||
I 3.1 | Introduction | 17 |
I 3.2 | The field axioms | 17 |
*I 3.3 | Exercises | 19 |
I 3.4 | The order axioms | 19 |
*I 3.5 | Exercises | 21 |
I 3.6 | Integers and rational numbers | 21 |
I 3.7 | Geometric interpretation of real numbers as points on a line | 22 |
I 3.8 | Upper bound of a set, maximum element, least upper bound (supremum) | 23 |
I 3.9 | The least-Upper-bound axiom (completeness axiom) | 25 |
I 3.10 | The Archimedean property of the real-number system | 25 |
I 3.11 | Fundamental properties of the supremum and infimum | 26 |
*I 3.12 | Exercises | 28 |
*I 3.13 | Existence of square roots of nonnegative real numbers | 29 |
*I 3.14 | Roots of higher order. Rational powers | 30 |
*I 3.15 | Representation of real numbers by decimals | 30 |
Part 4: Mathematical Induction, Summation Notation, and Related Topics | ||
I 4.1 | An example of a proof by mathematical induction | 32 |
I 4.2 | The principle of mathematical induction | 34 |
*I 4.3 | The well-ordering principle | 34 |
I 4.4 | Exercises | 35 |
*I 4.5 | Proof of the well-ordering principle | 37 |
I 4.6 | The summation notation | 37 |
I 4.7 | Exercises | 39 |
I 4.8 | Absolute values and the triangle inequality | 41 |
I 4.9 | Exercises | 43 |
*I 4.10 | Miscellaneous exercises involving induction | 44 |
1. THE CONCEPTS OF INTEGRAL CALCULUS | ||
1.1 | The basic ideas of Cartesian geometry | 48 |
1.2 | Functions. Informal description and examples | 50 |
1.3 | Functions. Formal definition as a set of ordered pairs | 53 |
1.4 | More examples of real functions | 54 |
1.5 | Exercises | 56 |
1.6 | The concept of area as a set function | 57 |
1.7 | Exercises | 60 |
1.8 | Intervals and ordinate sets | 60 |
1.9 | Partitions and step functions | 61 |
1.10 | Sum and product of step functions | 63 |
1.11 | Exercises | 63 |
1.12 | The definition of the integral for step functions | 64 |
1.13 | Properties of the integral of a step function | 66 |
1.14 | Other notations for integrals | 69 |
1.15 | Exercises | 70 |
1.16 | The integral of more general functions | 72 |
1.17 | Upper and lower integrals | 74 |
1.18 | The area of an ordinate set expressed as an integral | 75 |
1.19 | Informal remarks on the theory and technique of integration | 75 |
1.20 | Monotonic and piecewise monotonic functions. Definitions and examples | 76 |
1.21 | Integrability of bounded monotonic functions | 77 |
1.22 | Calculation of the integral of a bounded monotonic function | 79 |
1.23 | Calculation of the integral \(\int_0^b x^p dx\) when \(p\) is a positive integer | 79 |
1.24 | The basic properties of the integral | 80 |
1.25 | Integration of polynomials | 81 |
1.26 | Exercises | 83 |
1.27 | Proofs of the basic properties of the integral | 84 |
2. SOME APPLICATIONS OF INTEGRATION | ||
2.1 | Introduction | 88 |
2.2 | The area of a region between two graphs expressed as an integral | 88 |
2.3 | Worked examples | 89 |
2.4 | Exercises | 94 |
2.5 | The trigonometric functions | 94 |
2.6 | Integration formulas for the sine and cosine | 94 |
2.7 | A geometric description of the sine and cosine functions | 94 |
2.8 | Exercises | 94 |
2.9 | Polar coordinates | 94 |
2.10 | The integral for area in polar coordinates | 94 |
2.11 | Exercises | 94 |
2.12 | Application of integration to the calculation of volume | 94 |
2.13 | Exercises | 94 |
2.14 | Application of integration to the calculation of work | 94 |
2.15 | Exercises | 94 |
2.16 | Average value of a function | 94 |
2.17 | Exercises | 94 |
2.18 | The integral as a function of the upper limit. Indefinite integrals | 94 |
2.19 | Exercises | 94 |
3. CONTINUOUS FUNCTIONS | ||
3.1 | Informal description of continuity | 126 |
3.2 | The definition of the limit of a function | 127 |
3.3 | The definition of continuity of a function | 130 |
3.4 | The basic limit theorems. More examples of continuous functions | 131 |
3.5 | Proofs of the basic limit theorems | 135 |
3.6 | Exercises | 138 |
3.7 | Composite functions and continuity | 140 |
3.8 | Exercises | 142 |
3.9 | Bolzano's theorem for continuous functions | 142 |
3.10 | The intermediate-value theorem for continuous functions | 144 |
3.11 | Exercises | 145 |
3.12 | The process of inversion | 146 |
3.13 | Properties of functions preserved by inversion | 147 |
3.14 | Inverses of piecewise monotonic functions | 148 |
3.15 | Exercises | 149 |
3.16 | The extreme-value theorem for continuous functions | 150 |
3.17 | The small-span theorem for continuous functions (uniform continuity) | 152 |
3.18 | The integrability theorem for continuous functions | 152 |
3.19 | Mean-value theorems for integrals of continuous functions | 154 |
3.20 | Exercises | 155 |
4. DIFFERENTIAL CALCULUS | ||
4.1 | Historical introduction | 156 |
4.2 | A problem involving velocity | 157 |
4.3 | The derivative of a function | 159 |
4.4 | Examples of derivatives | 161 |
4.5 | The algebra of derivatives | 164 |
4.6 | Exercises | 167 |
4.7 | Geometric interpretation of the derivative as a slope | 169 |
4.8 | Other notations for derivatives | 171 |
4.9 | Exercises | 173 |
4.10 | The chain rule for differentiating composite functions | 174 |
4.11 | Applications of the chain rule. Related rates and implicit differentiation | 176 |
4.12 | Exercises | 179 |
4.13 | Applications of the differentiation to extreme values of cuntions | 181 |
4.14 | The mean-value theorem for derivatives | 183 |
4.15 | Exercises | 186 |
4.16 | Applications of the mean-value theorem to geometric properties of functions | 187 |
4.17 | Second-derivative test for extrema | 188 |
4.18 | Curve sketching | 189 |
4.19 | Exercises | 191 |
4.20 | Worked examples of extremum problems | 191 |
4.21 | Exercises | 194 |
4.22 | Partial derivatives | 196 |
4.23 | Exercises | 201 |
5. THE RELATION BETWEEN INTEGRATION AND DIFFERENTIATION | ||
5.1 | The derivative of an indefinite integral. The first fundamental theorem of calculus | 202 |
5.2 | The zero-derivative theorem | 204 |
5.3 | Primitive functions and the second fundamental theorem of calculus | 205 |
5.4 | Properties of a function deduced from properties of its derivative | 207 |
5.5 | Exercises | 208 |
5.6 | The Leibniz notation for primitives | 210 |
5.7 | Integration by substitution | 212 |
5.8 | Exercises | 216 |
5.9 | Integration by parts | 217 |
5.10 | Exercises | 220 |
5.11 | Miscellaneous review exercises | 222 |
6. THE LOGARITHM, THE EXPONENTIAL, AND THE INVERSE TRIGONOMETRIC FUNCTIONS | ||
6.1 | Introduction | 226 |
6.2 | Motivation for the definition of the natural logarithm as an integral | 227 |
6.3 | The definition of the logarithm. Basic properties | 226 |
6.4 | The graph of the natural logarithm | 226 |
6.5 | Consequences of the functional equation L(ab) = L(a) + L(b) | 226 |
6.6 | Logarithms referred to any positive base \(b \ne 1\) | 226 |
6.7 | Introduction | 226 |
6.8 | Introduction | 226 |
6.9 | Introduction | 226 |
6.10 | Introduction | 226 |
6.11 | Introduction | 226 |
6.12 | Introduction | 226 |
6.13 | Introduction | 226 |
6.14 | Introduction | 226 |
6.15 | Introduction | 226 |
6.16 | Introduction | 226 |
6.17 | Introduction | 226 |
6.18 | Introduction | 226 |
6.19 | Introduction | 226 |
6.20 | Introduction | 226 |
6.21 | Introduction | 226 |
6.22 | Introduction | 226 |
6.23 | Introduction | 226 |
6.24 | Introduction | 226 |
6.25 | Exercises | 267 |
6.26 | Miscellaneous review exercises | 268 |
Chapter 10: Segments, Rays, and Lines | ||
1 | Segments | 229 |
2 | Rays | 231 |
3 | Lines | 236 |
4 | Ordinary equation for a line | 246 |
Chapter 11: Trigonometry | ||
1 | Radian measure | 249 |
2 | Sine and cosine | 252 |
3 | The graphs | 264 |
4 | The tangent | 266 |
5 | Addition formulas | 272 |
6 | Rotations | 277 |
Chapter 12: Some Analytic Geometry | ||
1 | The straight line again | 281 |
2 | The parabola | 291 |
3 | The ellipse | 297 |
4 | The hyperbola | 300 |
5 | Rotation of hyperbolas | 305 |
PART IV: MISCELLANEOUS | ||
Chapter 13: Functions | ||
1 | Definition of a function | 313 |
2 | Polynomial functions | 318 |
3 | Graphs of functions | 330 |
4 | Exponential function | 333 |
5 | Logarithms | 338 |
Chapter 14: Mappings | ||
1 | Definition | 345 |
2 | Formalism of mappings | 351 |
3 | Permutations | 359 |
Chapter 15: Complex Numbers | ||
1 | The complex plane | 375 |
2 | Polar form | 380 |
Chapter 16: Induction and Summations | ||
1 | Induction | 383 |
2 | Summations | 388 |
3 | Geometric series | 396 |
Chapter 17: Determinants | ||
1 | Matrices | 401 |
2 | Determinants of order 2 | 406 |
3 | Properties of 2 x 2 determinants | 409 |
4 | Determinants of order 3 | 414 |
5 | Properties of 3 x 3 determinants | 418 |
6 | Cramer's Rule | 424 |
Index | 429 |