Maxwell's Equations: Difference between revisions

From The Portal Wiki
No edit summary
No edit summary
Line 1: Line 1:


: $$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$$
: $$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$
: $$\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t}$$
: $$\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t}$$
: $$\nabla \cdot \mathbf{B} = 0$$
: $$\nabla \cdot \mathbf{B} = 0$$
Line 7: Line 7:
In the example of an ideal vacuum with no charge or current, (i.e., $$\rho=0$$ and $$\mathbf{J}=0$$), these equations reduce to:
In the example of an ideal vacuum with no charge or current, (i.e., $$\rho=0$$ and $$\mathbf{J}=0$$), these equations reduce to:


: $$\nabla \times \mathbf{B} = +\frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$$
: $$\nabla \times \mathbf{B} = + \mu_0 \epsilon_0  \frac{\partial \mathbf{E}}{\partial t}$$
: $$\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t}$$
: $$\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t}$$
: $$\nabla \cdot \mathbf{B} = 0$$
: $$\nabla \cdot \mathbf{B} = 0$$

Revision as of 18:23, 8 March 2020

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$
$$\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$$

In the example of an ideal vacuum with no charge or current, (i.e., $$\rho=0$$ and $$\mathbf{J}=0$$), these equations reduce to:

$$\nabla \times \mathbf{B} = + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$
$$\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \cdot \mathbf{E} = 0$$

Resources:

Discussion: