Maxwell's Equations: Difference between revisions
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
This formulation assumes no charge $$\rho=0$$ and $$J=0$$. One common example of these conditions is a vacuum. | This formulation assumes no charge $$\rho=0$$ and $$J=0$$. One common example of these conditions is a vacuum. | ||
: $$\nabla \times \mathbf{B} = +\frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}$$ | : $$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$$ | ||
: $$\nabla \times \mathbf{E} = - | : $$\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t}$$ | ||
: $$\nabla \cdot \mathbf{B} = 0$$ | : $$\nabla \cdot \mathbf{B} = 0$$ | ||
: $$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$$ | : $$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$$ |
Revision as of 18:18, 8 March 2020
Joe Schmoe (b. xxxx)
Title xxxx
This formulation assumes no charge $$\rho=0$$ and $$J=0$$. One common example of these conditions is a vacuum.
- $$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$$
- $$\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t}$$
- $$\nabla \cdot \mathbf{B} = 0$$
- $$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$$