Quantum Electrodynamics (Book): Difference between revisions

From The Portal Wiki
m (book info)
mNo edit summary
 
(5 intermediate revisions by the same user not shown)
Line 12: Line 12:
}}
}}


In a previous edition of volume 4, the theory of strong and weak nuclear forces was covered, as is mentioned in the preface to the second edition. In hindsight, it wasn't possible to predict the path of these developments which continue today; This shouldn't reflect negatively on this QED volume since the basics methods of the electromagnetic field have not changed, and continuing to experimental applications such as quantum optics will not feel anything lost in this treatment. The present authors and likely Landau himself had the foresight to restrict focus on what could be completely understood, and explain:
{{NavContainerFlex
|content=
{{NavButton|link=[[Read#Landau|Read]]}}
{{NavButton|link=[[Quantum Field Theory]]}}
}}
 
In a previous edition of volume 4, the theory of strong and weak nuclear forces was covered, as is mentioned in the preface to the second edition. In hindsight, it wasn't possible to predict the path of these developments which continue today; This shouldn't reflect negatively on this quantum electrodynamics (QED) volume since the basics methods of the electromagnetic field have not changed, and continuing to experimental applications such as quantum optics will not feel anything lost in this treatment. Even at the time, QED was effectively a complete theory and maintains the highest accuracy predictions of any scientific theory in history. The same cannot be said of the excluded quantum gauge theories of the standard model. The present authors and likely Landau himself had the foresight to restrict focus on what could be completely understood, and explain:
* what a photon is, polarization
* what a photon is, polarization
* what a boson and fermion are, induced action by space-time symmetries
* what a boson and fermion are, induced action by space-time symmetries
Line 18: Line 24:
* radiation and application of the scattering/S-matrix concepts introduced in volume 3
* radiation and application of the scattering/S-matrix concepts introduced in volume 3
* perturbation and Feynman graph techniques to compute particle-particle interactions
* perturbation and Feynman graph techniques to compute particle-particle interactions
And the level of mathematics developed is sufficient to continue to apply it to the quantum theory of metals and superfluid helium as in volume 9, condensed matter physics.
And the level of mathematics developed is sufficient to continue to apply it to the quantum theory of metals and superfluid helium as in [[Statistical Physics part 2 - quantum theory (Book)| volume 9, condensed matter physics]].
</div>
</div>
So what has gone beyond QED? The same finite-volume and finite-energy cutoffs made by Landau in the introduction are embedded into the mathematics of renormalization and effective field theory. As can be seen in Atiyah's book on gauge fields and Michelsohn-Lawson on Spin geometry, there is more geometric depth to the classical theory of fields. Standard QFT techniques dictate that we start with classical fields (either functions or gauge fields on bundles) and quantize them to produce a space of operators with desired commutation relations that also respect representation-theoretic aspects of the classical fields. At the quantum level, we measure amplitudes which are given by Green's functions/Correlation functions/propagators that relate the probabilities of processes relating individual points in space-time. These are integrated together to give individual operators on the abstract Hilbert space, which is captured in the Wightman formalism in the Fields and Strings book. Since then, multiple types of axiomatic QFT have emerged to pin down the space of QFTs as a mathematical and geometrical entity:
So what has gone beyond QED? The same finite-volume and finite-energy cutoffs made by Landau in the introduction are embedded into the mathematics of renormalization and effective field theory. The representation theory arguments in Woit's and Mackey's books are used by Weinberg to pin down particle species and interactions, determining much of the basic structure of the relativistic theory from first principles alone. This is the single biggest practical step in how the theory is viewed by physicists since its inception by Jordan, Born, and Heisenberg. As can be seen in Atiyah's book on gauge fields and Michelsohn-Lawson on Spin geometry, there is more geometric depth to the classical theory of fields. Standard QFT techniques dictate that we start with classical fields (either functions or gauge fields on bundles) and quantize them to produce a space of operators with desired commutation relations that also respect representation-theoretic aspects of the classical fields, or equivalently directly compute the expectation values of these operators with path integrals using the classical field Lagrangian. Classical gauge theory has been used to further describe dynamical properties of the quantum theory, famously such as Weinberg and Salam's Electroweak theory and Anderson-Higgs' symmetry breaking. At the quantum level, we measure complex amplitudes which are given by Green's functions/Correlation functions/propagators that relate the probabilities of processes relating individual points in space-time. These are integrated together to give individual operators on the abstract Hilbert space, which is captured in the Wightman formalism in the Fields and Strings book. Since then, multiple types of axiomatic QFT have emerged to pin down the space of QFTs as a mathematical and geometrical entity:
* Wightman/correlator-based QFTs
* Wightman/correlator-based QFTs
* Haag-Kastler/C*-algebra based QFTs (continued into Connes' approach)
* Haag-Kastler/C*-algebra based QFTs (continued into Connes' approach)
* Topological QFTs (originating with Atiyah, Witten, and Segal with axiomatic conformal field theory)
* Topological QFTs (originating with Atiyah, Witten, and Segal with axiomatic conformal field theory)
As Costello puts it, QFT based on Lagrangians of fields (and correlator techniques) is the most fundamental. C*-algebra QFT has been used to describe information theoretic aspects of QFT, even near black holes, but yields few concrete techniques in the way of relevant QFT. TQFTs skirt formulating the analytic content of what a QFT is, focusing instead on their emergent topological properties, but goes even further from real physics. They are however a novel topological invariant, so more resources on TQFT will appear here under further algebraic topology.
As Costello puts it, QFT based on Lagrangians of fields (and correlator techniques) is the most fundamental. C*-algebra QFT has been used to describe information theoretic aspects of QFT, even near black holes, but yields few concrete techniques in the way of relevant QFT. TQFTs skirt formulating the analytic content of what a QFT is, focusing instead on their emergent topological properties, but goes even further from real physics. They are however a novel topological invariant, so more resources on TQFT will appear here under further algebraic topology.
Once some structural understanding of many basic examples of QFTs was achieved, starting with the S-matrix, the "bootstrap" philosophy began where one algebraically specified the relations between observables and their symmetries out of principle. This leads to the perspective of there being a space of QFTs, where CFTs (conformal field theories) are realized as special fixed points of a flow - much like as with phase transitions in statistical mechanics. Alternatively, other physicists try to determine the source of the analytic properties of the S-matrix leading them to vast simplifications in the computations of amplitudes by circumventing their expression as space-integrals.




Line 72: Line 80:
}}
}}
{{BookListing
{{BookListing
| cover = Kacvertex cover.jpg
| cover = Gerard microlocal qft cover.jpg
| link = Vertex Algebras for Beginners (Book)
| link = Microlocal Analysis of Quantum Fields on Curved Spacetimes (Book)
| title = === Vertex Algebras for Beginners ===
| title = === Microlocal Analysis of Quantum Fields on Curved Spacetimes ===
| desc = Vertex Algebras for Beginners by Victor Kac.
| desc = Microlocal Analysis of Quantum Fields on Curved Spacetimes by Christian Gérard.
}}
}}
{{BookListing
{{BookListing
| cover = Frenkelvertex cover.jpg
| cover = Dewitt global qft 1 cover.jpg
| link = Vertex Algebras and Algebraic Curves (Book)
| link = The Global Approach to Quantum Field Theory (Book Series)
| title = === Vertex Algebras and Algebraic Curves ===
| title = === The Global Approach to Quantum Field Theory ===
| desc = Vertex Algebras and Algebraic Curves by Edward Frenkel and David Ben-Zvi.
| desc = The Global Approach to Quantum Field Theory by Bryce DeWitt.
}}
}}
</div>
</div>

Latest revision as of 03:55, 6 February 2024

Quantum Electrodynamics
Landau 4 Quantum Electrodynamics cover.jpg
Information
Author Lev Landau
Language English
Series Course of Theoretical Physics
Publisher Butterworth Heinemann
Publication Date 1982
Pages 669
ISBN-13 978-0-08-050346-2

In a previous edition of volume 4, the theory of strong and weak nuclear forces was covered, as is mentioned in the preface to the second edition. In hindsight, it wasn't possible to predict the path of these developments which continue today; This shouldn't reflect negatively on this quantum electrodynamics (QED) volume since the basics methods of the electromagnetic field have not changed, and continuing to experimental applications such as quantum optics will not feel anything lost in this treatment. Even at the time, QED was effectively a complete theory and maintains the highest accuracy predictions of any scientific theory in history. The same cannot be said of the excluded quantum gauge theories of the standard model. The present authors and likely Landau himself had the foresight to restrict focus on what could be completely understood, and explain:

  • what a photon is, polarization
  • what a boson and fermion are, induced action by space-time symmetries
  • interaction of these particles with a classical field (to be thought of as a macroscopic lab environment)
  • radiation and application of the scattering/S-matrix concepts introduced in volume 3
  • perturbation and Feynman graph techniques to compute particle-particle interactions

And the level of mathematics developed is sufficient to continue to apply it to the quantum theory of metals and superfluid helium as in volume 9, condensed matter physics.

So what has gone beyond QED? The same finite-volume and finite-energy cutoffs made by Landau in the introduction are embedded into the mathematics of renormalization and effective field theory. The representation theory arguments in Woit's and Mackey's books are used by Weinberg to pin down particle species and interactions, determining much of the basic structure of the relativistic theory from first principles alone. This is the single biggest practical step in how the theory is viewed by physicists since its inception by Jordan, Born, and Heisenberg. As can be seen in Atiyah's book on gauge fields and Michelsohn-Lawson on Spin geometry, there is more geometric depth to the classical theory of fields. Standard QFT techniques dictate that we start with classical fields (either functions or gauge fields on bundles) and quantize them to produce a space of operators with desired commutation relations that also respect representation-theoretic aspects of the classical fields, or equivalently directly compute the expectation values of these operators with path integrals using the classical field Lagrangian. Classical gauge theory has been used to further describe dynamical properties of the quantum theory, famously such as Weinberg and Salam's Electroweak theory and Anderson-Higgs' symmetry breaking. At the quantum level, we measure complex amplitudes which are given by Green's functions/Correlation functions/propagators that relate the probabilities of processes relating individual points in space-time. These are integrated together to give individual operators on the abstract Hilbert space, which is captured in the Wightman formalism in the Fields and Strings book. Since then, multiple types of axiomatic QFT have emerged to pin down the space of QFTs as a mathematical and geometrical entity:

  • Wightman/correlator-based QFTs
  • Haag-Kastler/C*-algebra based QFTs (continued into Connes' approach)
  • Topological QFTs (originating with Atiyah, Witten, and Segal with axiomatic conformal field theory)

As Costello puts it, QFT based on Lagrangians of fields (and correlator techniques) is the most fundamental. C*-algebra QFT has been used to describe information theoretic aspects of QFT, even near black holes, but yields few concrete techniques in the way of relevant QFT. TQFTs skirt formulating the analytic content of what a QFT is, focusing instead on their emergent topological properties, but goes even further from real physics. They are however a novel topological invariant, so more resources on TQFT will appear here under further algebraic topology.

Once some structural understanding of many basic examples of QFTs was achieved, starting with the S-matrix, the "bootstrap" philosophy began where one algebraically specified the relations between observables and their symmetries out of principle. This leads to the perspective of there being a space of QFTs, where CFTs (conformal field theories) are realized as special fixed points of a flow - much like as with phase transitions in statistical mechanics. Alternatively, other physicists try to determine the source of the analytic properties of the S-matrix leading them to vast simplifications in the computations of amplitudes by circumventing their expression as space-integrals.


Applications[edit]

Weinberg1new.jpg

The Quantum Theory of Fields 1, Foundations

Foundations of Quantum Field Theory by Steven Weinberg

Weinberg 2 QFT gauge theory cover.jpg

Applications of Lie Groups to Differential Equations

The Quantum Theory of Fields 2, Gauge Theory by Steven Weinberg.

Fieldsandstrings1 cover.jpg

Quantum Fields and Strings: A Course for Mathematicians

Axiomatic classical and quantum field theory for mathematicians.

Haagqft cover.jpg

Local Quantum Physics: Fields, Particles, Algebras

C*-algebraic quantum field theory by Rudolph Haag.

Connes Noncommutative Geometry, Quantum Fields and Motives cover.jpg

Noncommutative Geometry, Quantum Fields and Motives

Noncommutative Geometry, Quantum Fields and Motives by Alain Connes and Matilde Marcolli.

Costellorenormalization cover.jpg

Renormalization and Effective Field Theory

Renormalization and Effective Field theory by Kevin Costello

Senechalcft cover.jpg

Conformal Field Theory

Conformal Field theory by Philippe Di Francesco, Pierre Mathieu, and David Sénéchal.

Gerard microlocal qft cover.jpg

Microlocal Analysis of Quantum Fields on Curved Spacetimes

Microlocal Analysis of Quantum Fields on Curved Spacetimes by Christian Gérard.

Dewitt global qft 1 cover.jpg

The Global Approach to Quantum Field Theory

The Global Approach to Quantum Field Theory by Bryce DeWitt.