Quantum Electrodynamics (Book): Difference between revisions

From The Portal Wiki
(created page)
 
(→‎Applications: created section)
Line 29: Line 29:
<div class="flex-container" style="clear: both;">
<div class="flex-container" style="clear: both;">
{{BookListing
{{BookListing
| cover = Arnold Ordinary Differential Equations Cover.jpg
| cover = Weinberg1new.jpg
| link = Ordinary Differential Equations (Book)
| link = The Quantum Theory of Fields 1, Foundations (Book)
| title = === Ordinary Differential Equations ===
| title = === The Quantum Theory of Fields 1, Foundations ===
| desc = Ordinary differential equations by Vladimir Arnold.
| desc = Foundations of Quantum Field Theory by Steven Weinberg
}}
}}
{{BookListing
{{BookListing
| cover = Olver Applications of Lie Groups to Differential Equations Cover.jpg
| cover = Weinberg 2 QFT gauge theory cover.jpg
| link = Applications of Lie Groups to Differential Equations (Book)
| link = The Quantum Theory of Fields 2, Gauge Theory (Book)
| title = === Applications of Lie Groups to Differential Equations ===
| title = === Applications of Lie Groups to Differential Equations ===
| desc = Applications of Lie Groups to Differential Equations by Peter Olver.
| desc = The Quantum Theory of Fields 2, Gauge Theory by Steven Weinberg.
}}
}}
{{BookListing
{{BookListing
| cover = Arnold Mathematical Methods of Classical Mechanics Cover.jpg
| cover = Fieldsandstrings1 cover.jpg
| link = Mathematical Methods of Classical Mechanics (Book)
| link = Quantum Fields and Strings: A Course for Mathematicians (Book Series)
| title = === Mathematical Methods of Classical Mechanics ===
| title = === Quantum Fields and Strings: A Course for Mathematicians ===
| desc = Mathematical Methods of Classical Mechanics by Vladimir Arnold.
| desc = Axiomatic classical and quantum field theory for mathematicians.
}}
}}
{{BookListing
{{BookListing
| cover = Arnold Dynamical Systems IV cover.jpg
| cover = Haagqft cover.jpg
| link = Dynamical Systems IV (Book)
| link = Local Quantum Physics: Fields, Particles, Algebras (Book)
| title = === Dynamical Systems IV ===
| title = === Local Quantum Physics: Fields, Particles, Algebras ===
| desc = Dynamical Systems IV by Vladimir Arnold.
| desc = C*-algebraic quantum field theory by Rudolph Haag.
}}
}}
{{BookListing
{{BookListing
| cover = Sternberg Symplectic Techniques in Physics cover.jpg
| cover = Connes Noncommutative Geometry, Quantum Fields and Motives cover.jpg
| link = Symplectic Techniques in Physics (Book)
| link = Noncommutative Geometry, Quantum Fields and Motives (Book)
| title = === Symplectic techniques in Physics ===
| title = === Noncommutative Geometry, Quantum Fields and Motives ===
| desc = Symplectic techniques in Physics by Shlomo Sternberg.
| desc = Noncommutative Geometry, Quantum Fields and Motives by Alain Connes and Matilde Marcolli.
}}
}}
{{BookListing
{{BookListing
| cover = Hermann Geometric Structure of Systems-Control Theory and Physics cover.jpg
| cover = Costellorenormalization cover.jpg
| link = Geometric Structure of Systems-Control Theory and Physics (Book)
| link = Renormalization and Effective Field Theory (Book)
| title = === Geometric Structure of Systems-Control Theory and Physics ===
| title = === Renormalization and Effective Field Theory ===
| desc = Geometric Structure of Systems-Control Theory and Physics by Robert Hermann.
| desc = Renormalization and Effective Field theory by Kevin Costello
}}
{{BookListing
| cover = Senechalcft cover.jpg
| link = Conformal Field Theory (Book)
| title = === Conformal Field Theory ===
| desc = Conformal Field theory by Philippe Di Francesco, Pierre Mathieu, and David Sénéchal.
}}
{{BookListing
| cover = Kacvertex cover.jpg
| link = Vertex Algebras for Beginners (Book)
| title = === Vertex Algebras for Beginners ===
| desc = Vertex Algebras for Beginners by Victor Kac.
}}
{{BookListing
| cover = Frenkelvertex cover.jpg
| link = Vertex Algebras and Algebraic Curves (Book)
| title = === Vertex Algebras and Algebraic Curves ===
| desc = Vertex Algebras and Algebraic Curves by Edward Frenkel and David Ben-Zvi.
}}
}}
</div>
</div>

Revision as of 14:09, 20 September 2023

Quantum Electrodynamics
Landau 4 Quantum Electrodynamics cover.jpg
Information
Author Lev Landau
Language English
Series Course of Theoretical Physics
Publisher Butterworth Heinemann
Publication Date 1976
Pages 170
ISBN-13 978-0-7506-2896-9

In a previous edition of volume 4, the theory of strong and weak nuclear forces was covered, as is mentioned in the preface to the second edition. In hindsight, it wasn't possible to predict the path of these developments which continue today; This shouldn't reflect negatively on this QED volume since the basics methods of the electromagnetic field have not changed, and continuing to experimental applications such as quantum optics will not feel anything lost in this treatment. The present authors and likely Landau himself had the foresight to restrict focus on what could be completely understood, and explain:

  • what a photon is, polarization
  • what a boson and fermion are, induced action by space-time symmetries
  • interaction of these particles with a classical field (to be thought of as a macroscopic lab environment)
  • radiation and application of the scattering/S-matrix concepts introduced in volume 3
  • perturbation and Feynman graph techniques to compute particle-particle interactions

And the level of mathematics developed is sufficient to continue to apply it to the quantum theory of metals and superfluid helium as in volume 9, condensed matter physics.

So what has gone beyond QED? As can be seen in Atiyah's book on gauge fields and Michelsohn-Lawson on Spin geometry, there is more geometric depth to the classical theory of fields. Standard QFT techniques dictate that we start with classical fields (either functions or gauge fields on bundles) and quantize them to produce a space of operators with desired commutation relations that also respect representation-theoretic aspects of the classical fields. At the quantum level, we measure amplitudes which are given by Green's functions/Correlation functions/propagators that relate the probabilities of processes relating individual points in space-time. These are integrated together to give individual operators on the abstract Hilbert space, which is captured in the Wightman formalism in the Fields and Strings book. Since then, multiple types of axiomatic QFT have emerged to pin down the space of QFTs as a mathematical and geometrical entity:

  • Wightman/correlator-based QFTs
  • Haag-Kastler/C*-algebra based QFTs (continued into Connes' approach)
  • Topological QFTs (originating with Atiyah, Witten, and Segal with axiomatic conformal field theory)


Applications

Weinberg1new.jpg

The Quantum Theory of Fields 1, Foundations

Foundations of Quantum Field Theory by Steven Weinberg

Weinberg 2 QFT gauge theory cover.jpg

Applications of Lie Groups to Differential Equations

The Quantum Theory of Fields 2, Gauge Theory by Steven Weinberg.

Fieldsandstrings1 cover.jpg

Quantum Fields and Strings: A Course for Mathematicians

Axiomatic classical and quantum field theory for mathematicians.

Haagqft cover.jpg

Local Quantum Physics: Fields, Particles, Algebras

C*-algebraic quantum field theory by Rudolph Haag.

Connes Noncommutative Geometry, Quantum Fields and Motives cover.jpg

Noncommutative Geometry, Quantum Fields and Motives

Noncommutative Geometry, Quantum Fields and Motives by Alain Connes and Matilde Marcolli.

Costellorenormalization cover.jpg

Renormalization and Effective Field Theory

Renormalization and Effective Field theory by Kevin Costello

Senechalcft cover.jpg

Conformal Field Theory

Conformal Field theory by Philippe Di Francesco, Pierre Mathieu, and David Sénéchal.

Kacvertex cover.jpg

Vertex Algebras for Beginners

Vertex Algebras for Beginners by Victor Kac.

Frenkelvertex cover.jpg

Vertex Algebras and Algebraic Curves

Vertex Algebras and Algebraic Curves by Edward Frenkel and David Ben-Zvi.