Editing Lorenz Attractor
The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.
Latest revision | Your text | ||
Line 2: | Line 2: | ||
[[File:lorenzattractor.png|center|class=shadow|300px]] | [[File:lorenzattractor.png|center|class=shadow|300px]] | ||
</div> | </div> | ||
Β | From Wikipedia, the free encyclopedia | ||
Β | |||
The Lorenz system is a system of ordinary differential equations first studied by Edward Lorenz. It is notable for having chaotic solutions for certain parameter values and initial conditions. In particular, the Lorenz attractor is a set of chaotic solutions of the Lorenz system. In popular media the 'butterfly effect' stems from the real-world implications of the Lorenz attractor, i.e. that in any physical system, in the absence of perfect knowledge of the initial conditions (even the minuscule disturbance of the air due to a butterfly flapping its wings), our ability to predict its future course will always fail. This underscores that physical systems can be completely deterministic and yet still be inherently unpredictable even in the absence of quantum effects. The shape of the Lorenz attractor itself, when plotted graphically, may also be seen to resemble a butterfly. | The Lorenz system is a system of ordinary differential equations first studied by Edward Lorenz. It is notable for having chaotic solutions for certain parameter values and initial conditions. In particular, the Lorenz attractor is a set of chaotic solutions of the Lorenz system. In popular media the 'butterfly effect' stems from the real-world implications of the Lorenz attractor, i.e. that in any physical system, in the absence of perfect knowledge of the initial conditions (even the minuscule disturbance of the air due to a butterfly flapping its wings), our ability to predict its future course will always fail. This underscores that physical systems can be completely deterministic and yet still be inherently unpredictable even in the absence of quantum effects. The shape of the Lorenz attractor itself, when plotted graphically, may also be seen to resemble a butterfly. | ||
Line 12: | Line 9: | ||
*[https://en.wikipedia.org/wiki/Lorenz_system Lorenz_system] | *[https://en.wikipedia.org/wiki/Lorenz_system Lorenz_system] | ||
== Discussion:== | == Discussion:== | ||