Editing Editing the Graph

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 26: Line 26:


[[Eric Weinstein|Eric]] has suggested several alterations, listed below:
[[Eric Weinstein|Eric]] has suggested several alterations, listed below:
* In (ii), “vector bundle <math>X</math>” should be changed to principal G-bundle.
* In (ii), “vector bundle X” should be changed to principal G-bundle.
* Also in (ii), “nonabelian gauge group G” should be changed to nonabelian structure group G.
* Also in (ii), “nonabelian gauge group G” should be changed to nonabelian structure group G.
* In (iii), <math>R</math> and <math>\tilde{R}</math> should be (complex) linear representations of G and so they are not equivalent.
* In (iii), \(R\) and \(\tilde{R}\) should be (complex) linear representations of G and so they are not equivalent.
* He mentioned that some info was not required, and that the Higgs is remarkably absent.
* He mentioned that some info was not required, and that the Higgs is remarkably absent.


Line 39: Line 39:
If one wants to summarize our knowledge of physics in the briefest possible terms, there are three really fundamental observations:
If one wants to summarize our knowledge of physics in the briefest possible terms, there are three really fundamental observations:


(i) Spacetime is a pseudo-Riemannian manifold <math>M</math>, endowed with a metric tensor and governed by geometrical laws.
(i) Spacetime is a pseudo-Riemannian manifold $$M$$, endowed with a metric tensor and governed by geometrical laws.


(ii) Over <math>M</math> is a vector bundle <math>X</math> with a non-abelian gauge group <math>G</math>.
(ii) Over $$M$$ is a vector bundle $$X$$ with a non-abelian gauge group $$G$$.


(iii) Fermions are sections of <math>(\hat{S}_{+} \otimes V_{R}) \oplus (\hat{S}_{-} \otimes V_{\tilde{R}})</math>. <math>R</math> and <math>\tilde{R}</math> are not isomorphic; their failure to be isomorphic explains why the light fermions are light and presumably has its origins in representation difference <math>\Delta</math> in some underlying theory.
(iii) Fermions are sections of $$(\hat{S}_{+} \otimes V_{R}) \oplus (\hat{S}_{-} \otimes V_{\tilde{R}})$$. $$R$$ and $$\tilde{R}$$ are not isomorphic; their failure to be isomorphic explains why the light fermions are light and presumably has its origins in representation difference $$\Delta$$ in some underlying theory.


All of this must be supplemented with the understanding that the geometrical laws obeyed by the metric tensor, the gauge fields, and the fermions are to be interpreted in quantum mechanical terms.
All of this must be supplemented with the understanding that the geometrical laws obeyed by the metric tensor, the gauge fields, and the fermions are to be interpreted in quantum mechanical terms.
Line 79: Line 79:
If one wants to summarise our knowledge of physics in the briefest possible terms, there are three really fundamental observations:
If one wants to summarise our knowledge of physics in the briefest possible terms, there are three really fundamental observations:


# [https://en.wikipedia.org/wiki/Spacetime Spacetime] is a [https://en.wikipedia.org/wiki/Pseudo-Riemannian_manifold pseudo-Riemannian manifold] <math>M</math>, endowed with a [[metric tensor]] and governed by [https://en.wikipedia.org/wiki/Geometry geometrical laws].
# [https://en.wikipedia.org/wiki/Spacetime Spacetime] is a [https://en.wikipedia.org/wiki/Pseudo-Riemannian_manifold pseudo-Riemannian manifold] $$M$$, endowed with a [[metric tensor]] and governed by [https://en.wikipedia.org/wiki/Geometry geometrical laws].
# Over <math>M</math> is a [https://en.wikipedia.org/wiki/Principal_bundle principal bundle] <math>P_{G}</math>, with a [https://en.wikipedia.org/wiki/Non-abelian_group non-abelian structure group] <math>G</math>.
# Over $$M$$ is a [https://en.wikipedia.org/wiki/Principal_bundle principal bundle] $$P_{G}$$, with a [https://en.wikipedia.org/wiki/Non-abelian_group non-abelian structure group] $$G$$.
# [https://en.wikipedia.org/wiki/Fermion Fermions] are sections of <math>(\hat{S}_{+} \otimes V_{R}) \oplus (\hat{S}\_ \otimes V_{\bar{R}})</math>. <math>R</math> and <math>\bar{R}</math> are not [https://en.wikipedia.org/wiki/Isomorphism isomorphic]; their failure to be isomorphic explains why the light fermions are light.
# [https://en.wikipedia.org/wiki/Fermion Fermions] are sections of $$(\hat{S}_{+} \otimes V_{R}) \oplus (\hat{S}\_ \otimes V_{\bar{R}})$$. $$R$$ and $$\bar{R}$$ are not [https://en.wikipedia.org/wiki/Isomorphism isomorphic]; their failure to be isomorphic explains why the light fermions are light.
# The masses of elementary particles are generated through the Higgs mechanism.
# The masses of elementary particles are generated through the Higgs mechanism.


Please note that all contributions to The Portal Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see The Portal:Copyrights for details). Do not submit copyrighted work without permission!
Cancel Editing help (opens in new window)

Templates used on this page: