Editing Classical Mechanics

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 17: Line 17:


<div class="math-block">
<div class="math-block">
<math> \frac{d}{dt} \frac{\partial L(q(t), \dot{q}(t), t)}{\partial \dot{q}}=\frac{\partial L(q(t), \dot{q}(t), t)}{\partial q},\quad m * \frac{d^2 q(t)}{dt^2}=-k*q(t)</math>
<math> \frac{d}{dt} \frac{\partial L(q(t), \dot{q}(t), t)}{\partial \dot{q}}=\frac{\partial L(q(t), \dot{q}(t), t)}{\partial q},\quad m * \frac{d^2 q(t)}{dt^2}=-k*q(t)</math></div>
</div>


Computed in the particular example of a Lagrangian given previously. Regarding the position and velocity variables as functions of time again means that given a particular formula for a Lagrangian, the resulting Euler-Lagrange equation has the form of an ordinary differential equation whose solution is just the function <math> q(t) </math>. The partial derivatives of L with respect to position and velocity at each time indicate vectors in the constant-time planes as in the picture, that point in the direction of increase of L. Thus the Euler-Lagrange equation for motion in one dimension can be interpreted in the 3d geometric picture. The change in the velocity component of this vector as one moves up in time along the trajectory (e.g. it decreases) is the instantaneous value of the position component. This time derivative is in the case of when L is time independent, totally determined by the direction of the trajectory in the 3d graphed trajectory space at that time. Given an initial position and velocity at some time, this fixes the rest of the curve for future times, as it is constrained to follow the direction given by the EL equation at each time. In particular, this gives the endpoint at some chosen later time.
Computed in the particular example of a Lagrangian given previously. Regarding the position and velocity variables as functions of time again means that given a particular formula for a Lagrangian, the resulting Euler-Lagrange equation has the form of an ordinary differential equation whose solution is just the function <math> q(t) </math>. The partial derivatives of L with respect to position and velocity at each time indicate vectors in the constant-time planes as in the picture, that point in the direction of increase of L. Thus the Euler-Lagrange equation for motion in one dimension can be interpreted in the 3d geometric picture. The change in the velocity component of this vector as one moves up in time along the trajectory (e.g. it decreases) is the instantaneous value of the position component. This time derivative is in the case of when L is time independent, totally determined by the direction of the trajectory in the 3d graphed trajectory space at that time. Given an initial position and velocity at some time, this fixes the rest of the curve for future times, as it is constrained to follow the direction given by the EL equation at each time. In particular, this gives the endpoint at some chosen later time.
Line 30: Line 29:
Supposing <math> q_i(t) </math> solves the EL equations for s degrees of freedom, we can analyze properties of the integral across finite time <math> S = \int_{t_1}^{t_2} L(q_1(t), \cdots, q_s(t), \dot{q}_1(t), \cdots, \dot{q}_s(t), t) dt </math>, since substituting the trajectory gives a strict function of time. Integrals/primitives are often viewed as functions of the bounds of integration, however the perspective in mechanics is to make it a function of the trajectory. This means <math> S(q(-)) </math> with t suppressed to indicate it does not depend on time is a scalar function on an infinite dimensional space of paths. We want to understand its derivative, and thus when it has a minimum. There is an easy way to do this without thinking too hard about how to formulate what these spaces are, which we do in a later section to enhance this explanation. Also note that being a function of the trajectory (a functional) means that the underlying set of the trajectory in physical configuration space does not describe the motion completely, since the same path can be traced out by motion at different velocities implying the need for the parametrization by time. Parametrization-dependence is exploited further in differential geometry when defining tangent vectors on abstract manifolds.
Supposing <math> q_i(t) </math> solves the EL equations for s degrees of freedom, we can analyze properties of the integral across finite time <math> S = \int_{t_1}^{t_2} L(q_1(t), \cdots, q_s(t), \dot{q}_1(t), \cdots, \dot{q}_s(t), t) dt </math>, since substituting the trajectory gives a strict function of time. Integrals/primitives are often viewed as functions of the bounds of integration, however the perspective in mechanics is to make it a function of the trajectory. This means <math> S(q(-)) </math> with t suppressed to indicate it does not depend on time is a scalar function on an infinite dimensional space of paths. We want to understand its derivative, and thus when it has a minimum. There is an easy way to do this without thinking too hard about how to formulate what these spaces are, which we do in a later section to enhance this explanation. Also note that being a function of the trajectory (a functional) means that the underlying set of the trajectory in physical configuration space does not describe the motion completely, since the same path can be traced out by motion at different velocities implying the need for the parametrization by time. Parametrization-dependence is exploited further in differential geometry when defining tangent vectors on abstract manifolds.


In two dimensions, rather than infinite, the minimum of a function can be described by an equivalent condition to the derivative being 0. Let <math> F:\mathbb{R}^2\rightarrow \mathbb{R} </math>. Typically we would check the condition <math> \frac{\partial F(x_0,y_0)}{\partial x}=\frac{\partial F(x_0,y_0)}{\partial y}=0 </math> at some point <math> (x_0,y_0)\in \mathbb{R}^2 </math>. Rather than differentiating, we can analyze the finite difference treating the input as a vector: <math> F(\mathbf{x}+\mathbf{h})-F(\mathbf{x}) = G(\mathbf{h})</math> and look at the linear part of <math> G </math>. If <math> F </math> was already linear, then computing its derivative comes simply: <math> F(x,y)=ax+by+c\rightarrow G(h_1, h_2)=ah_1+bh_2 </math>. Note the linear dependence on <math> \mathbf{h} </math>, which will remain even when <math> F </math> has higher order terms: <math> G=ah_1+bh_2+ch_1^2+dh_1h_2+\cdots </math>. The functions in finite dimensions we are used to have derivatives, so their derivatives can be described via the linear part of <math> G(\mathbf{h})=L(\mathbf{h})+R(\mathbf{h}), \, L(\mathbf{h}+\mathbf{h}')=L(\mathbf{h})+L(\mathbf{h}') </math>. In infinite dimensions, we may not always have explicit methods of differentiating, but we can look for the linear part of the difference at shifted inputs. We also have to be sure that the entire linear part is in <math> L </math>, so this puts a condition on <math> R </math>.
In two dimensions, rather than infinite, the minimum of a function can be described by an equivalent condition to the derivative being 0. Let <math> F:\mathbb{R}^2\rightarrow \mathbb{R} </math>. Typically we would check the condition <math> \frac{\partial F(x_0,y_0)}{\partial x}=\frac{\partial F(x_0,y_0)}{\partial y}=0 </math> at some point <math> (x_0,y_0)\in \mathbb{R}^2 </math>.


[[File:Gaudi hanging strings.jpg|thumb|right|Hanging strings and weights used by Gaudi to model the shape of La Sagrada Familia. [http://dataphys.org/list/gaudis-hanging-chain-models/ source]]]
[[File:Gaudi hanging strings.jpg|thumb|right|Hanging strings and weights used by Gaudi to model the shape of La Sagrada Familia. [http://dataphys.org/list/gaudis-hanging-chain-models/ source]]]
Please note that all contributions to The Portal Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see The Portal:Copyrights for details). Do not submit copyrighted work without permission!
Cancel Editing help (opens in new window)

Templates used on this page: