Jump to content
Toggle sidebar
The Portal Wiki
Search
Create account
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Talk
Contributions
Navigation
Intro to The Portal
Knowledgebase
Geometric Unity
Economic Gauge Theory
All Podcast Episodes
All Content by Eric
Ericisms
Learn Math & Physics
Graph, Wall, Tome
Community
The Portal Group
The Portal Discords
The Portal Subreddit
The Portal Clips
Community Projects
Wiki Help
Getting Started
Wiki Usage FAQ
Tools
What links here
Related changes
Special pages
Page information
More
Recent changes
File List
Random page
Editing
The Road to Reality Study Notes
(section)
Page
Discussion
English
Read
Edit
View history
More
Read
Edit
View history
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== 7.1 Complex smoothness; holomorphic functions === An outline for section 7 is presented, in which calculus with complex numbers is introduced. The material in this chapter leads up to the explanation of [https://en.wikipedia.org/wiki/Holomorphic_function holomorphic functions], which play a vital role in much of the mathematical as well as physics material later in the book. To do so, the notion of a special type of integration along a contour in the complex plane is to be defined. This integration can then be used to solve for the coefficients of a [https://en.wikipedia.org/wiki/Taylor_series Taylor series] expression which allow for us to see that any complex function which is complex-smooth in the complex plane is necessarily analytic, or holomorphic. As will be stated in 7.3, instead of directly providing the definition of holomorphic functions, Penrose chooses to demonstrate the argument with the ingredients in order to show a "wonderful example of the way that mathematicians can often obtain their results. Neither the premise (<math>f(z)</math> is complex-smooth) nor the conclusion (<math>f(z)</math> is analytic) contains a hint of the notion of contour integration or the multivaluedness of a complex logarithm. Yet these ingredients provide the essential clues to the true route to finding the answer".
Summary:
Please note that all contributions to The Portal Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
The Portal:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)