Jump to content
Toggle sidebar
The Portal Wiki
Search
Create account
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Talk
Contributions
Navigation
Intro to The Portal
Knowledgebase
Geometric Unity
Economic Gauge Theory
All Podcast Episodes
All Content by Eric
Ericisms
Learn Math & Physics
Graph, Wall, Tome
Community
The Portal Group
The Portal Discords
The Portal Subreddit
The Portal Clips
Community Projects
Wiki Help
Getting Started
Wiki Usage FAQ
Tools
What links here
Related changes
Special pages
Page information
More
Recent changes
File List
Random page
Editing
The Road to Reality Study Notes
(section)
Page
Discussion
English
Read
Edit
View history
More
Read
Edit
View history
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== 1.2 Mathematical truth === There was a need to define a more rigorous method for differentiating truth claims. The Greek philosopher [https://en.wikipedia.org/wiki/Thales_of_Miletus Thales of Miletus] (c. 625-547 BC) and [https://en.wikipedia.org/wiki/Pythagoras Pythagoras of Samos] (c. 572-497 BC) are considered to be the first to introduce the concept of ''mathematical proof''. Developing a rigorous mathematical framework was central to the development of science. Mathematical proof allowed for much stronger statements to be made about relationships between the arithmetic of numbers and the geometry of physical space. A mathematical proof is essentially an argument in which one starts from a mathematical statement, which is taken to be true, and using only logical rules arrives at a new mathematical statement. If the mathematician hasn't broken any rules then the new statement is called a ''theorem''. The most fundamental mathematical statements, from which all other proofs are built, are called ''axioms'' and their validity is taken to be self-evident. Mathematicians trust that the axioms, on which their theorems depend, are actually ''true''. The Greek philosopher [https://en.wikipedia.org/wiki/Plato Plato] (c.429-347 BC) believed that mathematical proofs referred not to actual physical objects but to certain idealized entities. Physical manifestations of geometric objects could come close to the Platonic world of mathematical forms, but they were always approximations. To Plato the idealized mathematical world of forms was a place of absolute truth, but inaccessible from the physical world.
Summary:
Please note that all contributions to The Portal Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
The Portal:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)