Jump to content
Toggle sidebar
The Portal Wiki
Search
Create account
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Talk
Contributions
Navigation
Intro to The Portal
Knowledgebase
Geometric Unity
Economic Gauge Theory
All Podcast Episodes
All Content by Eric
Ericisms
Learn Math & Physics
Graph, Wall, Tome
Community
The Portal Group
The Portal Discords
The Portal Subreddit
The Portal Clips
Community Projects
Wiki Help
Getting Started
Wiki Usage FAQ
Tools
What links here
Related changes
Special pages
Page information
More
Recent changes
File List
Random page
Editing
The Road to Reality Study Notes
(section)
Page
Discussion
English
Read
Edit
View history
More
Read
Edit
View history
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== 5.5 Some Relations To Modern Particle Physics === Penrose rounds out the chapter with some examples of complex concepts in the world of particle physics. Additive quantum numbers were briefly introduced in section 3.5, and here we are introduced to multiplicative quantum numbers, which are quantified in terms of nth roots of unity. The notion of [https://en.wikipedia.org/wiki/Parity_(physics) parity] is introduced as approximately a multiplicative quantum number with n=2, and an example is the family of particles called [https://en.wikipedia.org/wiki/Boson bosons]. Penrose notes that [https://en.wikipedia.org/wiki/Fermion fermions] could also be considered a parity group but it is not the normal convention. The distinction between these two particles are that bosons are completely restored to their original states under a <math>2π</math> rotation, whereas fermions require <math>4π</math> (two rotations). Thus a multiplicative quantum number of <math>-1</math> can be assigned to a fermion and <math>+1</math> to a boson. An example of a multiplicative quantum number with <math>n=3</math> relates to quarks, which have values for electric charge that are not integer multiples of the electron’s charge, but in fact <math>\frac{1}{3}</math> multiples. If <math>q</math> is the value of electric charge with respect to an electron (<math>q=-1</math> for electron charge), then quarks have q=<math>\frac{2}{3}</math> or <math>-\frac{1}{3}</math> and antiquarks q=<math>\frac{1}{3}</math> or <math>-\frac{2}{3}</math>. If we take the multiplicative quantum number <math>e^{-2qπi}</math>, then we find the values <math>1,ω,ω^2</math> from section 5p4, which constitute the cyclic group Z<sub>3</sub>.
Summary:
Please note that all contributions to The Portal Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
The Portal:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)