Jump to content
Toggle sidebar
The Portal Wiki
Search
Create account
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Talk
Contributions
Navigation
Intro to The Portal
Knowledgebase
Geometric Unity
Economic Gauge Theory
All Podcast Episodes
All Content by Eric
Ericisms
Learn Math & Physics
Graph, Wall, Tome
Community
The Portal Group
The Portal Discords
The Portal Subreddit
The Portal Clips
Community Projects
Wiki Help
Getting Started
Wiki Usage FAQ
Tools
What links here
Related changes
User contributions
Logs
View user groups
Special pages
Page information
More
Recent changes
File List
Random page
Editing
User:ConceptHut
(section)
User page
Discussion
English
Read
Edit
View history
More
Read
Edit
View history
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== The Graph == This is the original version of "the paragraph" by Edward Witten that was [https://twitter.com/EricRWeinstein/status/928296366853328896?s=20 posted by Eric via Twitter]. [[file:The-graph.png|600px]] <blockquote> '''Edward Witten (original)''' If one wants to summarize our knowledge of physics in the briefest possible terms, there are three really fundamental observations: # [https://en.wikipedia.org/wiki/Spacetime Spacetime] is a [https://en.wikipedia.org/wiki/Pseudo-Riemannian_manifold pseudo-Riemannian manifold] : <math>M</math>, endowed with a [[metric tensor]] and governed by [https://en.wikipedia.org/wiki/Geometry geometrical laws]. # Over <math>M</math> is a [https://en.wikipedia.org/wiki/Vector_bundle vector bundle] : <math>X</math>, with a [https://en.wikipedia.org/wiki/Non-abelian_group non-abelian] [https://en.wikipedia.org/wiki/Gauge_theory gauge group] : <math>G</math>. # [https://en.wikipedia.org/wiki/Fermion Fermions] are sections of <math>(\hat{S}_{+} \otimes V_{R}) \oplus (\hat{S}\_ \otimes V_{\tilde{R}})</math>. <math>R</math> and <math>\tilde{R}</math> are not [https://en.wikipedia.org/wiki/Isomorphism isomorphic]; their failure to be isomorphic explains why the light fermions are light. All of this must be supplemented with the understanding that the geometrical laws obeyed by the metric tensor, the [https://en.wikipedia.org/wiki/Introduction_to_gauge_theory gauge fields], and the fermions are to be interpreted in [https://en.wikipedia.org/wiki/Quantum_mechanics quantum mechanical] terms. </blockquote> Eric Weinstein suggested several alterations: * In (ii), “vector bundle X” should be changed to "principal G-bundle". * Also in (ii), “nonabelian gauge group G” should be changed to "nonabelian structure group G". * In (iii), <math>\ R</math> and <math>\tilde R</math> should be (complex) linear representations of G and so they are not equivalent. * He mentioned that some info was not required, and that higgs is remarkably absent. <blockquote> '''Eric Weinstein (update)''' If one wants to summarise our knowledge of physics in the briefest possible terms, there are three really fundamental observations: # [https://en.wikipedia.org/wiki/Spacetime Spacetime] is a [https://en.wikipedia.org/wiki/Pseudo-Riemannian_manifold pseudo-Riemannian manifold] : <math>M</math>, endowed with a [[metric tensor]] and governed by [https://en.wikipedia.org/wiki/Geometry geometrical laws]. # Over <math>M</math> is a [https://en.wikipedia.org/wiki/Principal_bundle principal bundle] : <math>P_{G}</math>, with a [https://en.wikipedia.org/wiki/Non-abelian_group non-abelian] [https://en.wikipedia.org/wiki/Fiber_bundle#Structure_groups_and_transition_functions structure group] : <math>G</math>. # [https://en.wikipedia.org/wiki/Fermion Fermions] are sections of <math>(\hat{S}_{+} \otimes V_{R}) \oplus (\hat{S}\_ \otimes V_{\bar{R}})</math>. <math>R</math> and <math>\bar{R}</math> are not [https://en.wikipedia.org/wiki/Isomorphism isomorphic]; their failure to be isomorphic explains why the light fermions are light. # Add something about Higgs All of this must be supplemented with the understanding that the geometrical laws obeyed by the metric tensor, the [https://en.wikipedia.org/wiki/Introduction_to_gauge_theory gauge fields], and the fermions are to be interpreted in [https://en.wikipedia.org/wiki/Quantum_mechanics quantum mechanical] terms. </blockquote>
Summary:
Please note that all contributions to The Portal Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
The Portal:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)