Editing Pythagorean Theorem

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 2: Line 2:
[[File:Visual_proof_pythagoras.png|center|class=shadow|300px]]
[[File:Visual_proof_pythagoras.png|center|class=shadow|300px]]
</div>
</div>
From Wikipedia, the free encyclopedia
In mathematics, the Pythagorean theorem, also known as Pythagoras' theorem, is a fundamental relation in Euclidean geometry among the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides. This theorem can be written as an equation relating the lengths of the sides a, b and c, often called the "Pythagorean equation":
In mathematics, the Pythagorean theorem, also known as Pythagoras' theorem, is a fundamental relation in Euclidean geometry among the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides. This theorem can be written as an equation relating the lengths of the sides a, b and c, often called the "Pythagorean equation":


Line 7: Line 9:


where <math>c</math> represents the length of the hypotenuse and <math>a</math> and <math>b</math> the lengths of the triangle's other two sides. The theorem, whose history is the subject of much debate, is named for the ancient Greek thinker Pythagoras.
where <math>c</math> represents the length of the hypotenuse and <math>a</math> and <math>b</math> the lengths of the triangle's other two sides. The theorem, whose history is the subject of much debate, is named for the ancient Greek thinker Pythagoras.
The theorem has been given numerous proofs – possibly the most for any mathematical theorem. They are very diverse, including both geometric proofs and algebraic proofs, with some dating back thousands of years. The theorem can be generalized in various ways, including higher-dimensional spaces, to spaces that are not Euclidean, to objects that are not right triangles, and indeed, to objects that are not triangles at all, but n-dimensional solids. The Pythagorean theorem has attracted interest outside mathematics as a symbol of mathematical abstruseness, mystique, or intellectual power; popular references in literature, plays, musicals, songs, stamps and cartoons abound.


== Resources:==
== Resources:==
Please note that all contributions to The Portal Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see The Portal:Copyrights for details). Do not submit copyrighted work without permission!
Cancel Editing help (opens in new window)