Jump to content

A Portal Special Presentation- Geometric Unity: A First Look: Difference between revisions

Line 270: Line 270:
<p>[00:50:23] That should be an "LC" for Levi-Civita. So, the Einstein projection of the curvature tensor of the Levi-Civita connection of the metric on this side, and on this side, I'm going to write down this differential operator: the adjoint of the exterior derivative coupled to a connection.
<p>[00:50:23] That should be an "LC" for Levi-Civita. So, the Einstein projection of the curvature tensor of the Levi-Civita connection of the metric on this side, and on this side, I'm going to write down this differential operator: the adjoint of the exterior derivative coupled to a connection.


<p>[00:50:47] And you begin to see that we're missing an opportunity, potentially. What if the FAs were the same in both contexts? Then you're applying two separate operators: 1) zeroth order and destructive, in the sense that it doesn't see the entire curvature tensor; the other) inclusive, but of first-order. And so the question is, is there any opportunity to do anything that combines these two?
<p>[00:50:47] And you begin to see that we're missing an opportunity, potentially. What if the $F_A$s were the same in both contexts? Then you're applying two separate operators: 1) zeroth-order and destructive, in the sense that it doesn't see the entire curvature tensor; the other) inclusive, but of first-order. And so the question is, is there any opportunity to do anything that combines these two?


<p>[00:51:15] But the problem is, is that the hallmark of the Yang-Mills theory is the freedom to choose the data, the internal quantum numbers that give all the particles their personalities beyond the mass and the spin.
<p>[00:51:15] But the problem is, is that the hallmark of the Yang-Mills theory is the freedom to choose the data, the internal quantum numbers that give all the particles their personalities beyond the mass and the spin.
Anonymous user