6,489
edits
No edit summary |
No edit summary |
||
Line 159: | Line 159: | ||
| 1.27 || Proofs of the basic properties of the integral || 84 | | 1.27 || Proofs of the basic properties of the integral || 84 | ||
|- | |- | ||
! colspan="3" | | ! colspan="3" | 2. SOME APPLICATIONS OF INTEGRATION | ||
|- | |- | ||
| 2.1 || Introduction || 88 | |||
|- | |- | ||
| | | 2.2 || The area of a region between two graphs expressed as an integral || 88 | ||
|- | |- | ||
| 2 || | | 2.3 || Worked examples || 89 | ||
|- | |- | ||
| | | 2.4 || Exercises || 94 | ||
|- | |- | ||
| 2.5 || The trigonometric functions || 94 | |||
|- | |- | ||
| | | 2.6 || Integration formulas for the sine and cosine || 94 | ||
|- | |- | ||
| 2 || | | 2.7 || A geometric description of the sine and cosine functions || 94 | ||
|- | |- | ||
| | | 2.8 || Exercises || 94 | ||
|- | |- | ||
| | | 2.9 || Polar coordinates || 94 | ||
|- | |- | ||
| | | 2.10 || The integral for area in polar coordinates || 94 | ||
|- | |- | ||
| | | 2.11 || Exercises || 94 | ||
|- | |- | ||
| 2.12 || Application of integration to the calculation of volume || 94 | |||
|- | |- | ||
| | | 2.13 || Exercises || 94 | ||
|- | |- | ||
| 2 || | | 2.14 || Application of integration to the calculation of work || 94 | ||
|- | |- | ||
| 2.15 || Exercises || 94 | |||
|- | |- | ||
! colspan="3" | | | 2.16 || Average value of a function || 94 | ||
|- | |||
| 2.17 || Exercises || 94 | |||
|- | |||
| 2.18 || The integral as a function of the upper limit. Indefinite integrals || 94 | |||
|- | |||
| 2.19 || Exercises || 94 | |||
|- | |||
! colspan="3" | 3. CONTINUOUS FUNCTIONS | |||
|- | |||
| 3.1 || Informal description of continuity || 126 | |||
|- | |||
| 3.2 || The definition of the limit of a function || 127 | |||
|- | |||
| 3.3 || The definition of continuity of a function || 130 | |||
|- | |||
| 3.4 || The basic limit theorems. More examples of continuous functions || 131 | |||
|- | |||
| 3.5 || Proofs of the basic limit theorems || 135 | |||
|- | |||
| 3.6 || Exercises || 138 | |||
|- | |||
| 3.7 || Composite functions and continuity || 140 | |||
|- | |||
| 3.8 || Exercises || 142 | |||
|- | |||
| 3.9 || Bolzano's theorem for continuous functions || 142 | |||
|- | |||
| 3.10 || The intermediate-value theorem for continuous functions || 144 | |||
|- | |||
| 3.11 || Exercises || 145 | |||
|- | |||
| 3.12 || The process of inversion || 146 | |||
|- | |||
| 3.13 || Properties of functions preserved by inversion || 147 | |||
|- | |||
| 3.14 || Inverses of piecewise monotonic functions || 148 | |||
|- | |||
| 3.15 || Exercises || 149 | |||
|- | |||
| 3.16 || The extreme-value theorem for continuous functions || 150 | |||
|- | |||
| 3.17 || The small-span theorem for continuous functions (uniform continuity) || 152 | |||
|- | |||
| 3.18 || The integrability theorem for continuous functions || 152 | |||
|- | |||
| 3.19 || Mean-value theorems for integrals of continuous functions || 154 | |||
|- | |||
| 3.20 || Exercises || 155 | |||
|- | |||
! colspan="3" | 4. DIFFERENTIAL CALCULUS | |||
|- | |||
| 4.1 || Historical introduction || 156 | |||
|- | |||
| 4.2 || A problem involving velocity || 157 | |||
|- | |||
| 4.3 || The derivative of a function || 159 | |||
|- | |||
| 4.4 || Examples of derivatives || 161 | |||
|- | |||
| 4.5 || The algebra of derivatives || 164 | |||
|- | |||
| 4.6 || Exercises || 167 | |||
|- | |||
| 4.7 || Geometric interpretation of the derivative as a slope || 169 | |||
|- | |||
| 4.8 || Other notations for derivatives || 171 | |||
|- | |||
| 4.9 || Exercises || 173 | |||
|- | |||
| 4.10 || The chain rule for differentiating composite functions || 174 | |||
|- | |||
| 4.11 || Applications of the chain rule. Related rates and implicit differentiation || 176 | |||
|- | |||
| 4.12 || Exercises || 179 | |||
|- | |||
| 4.13 || Applications of the differentiation to extreme values of cuntions|| 181 | |||
|- | |||
| 4.14 || The mean-value theorem for derivatives || 183 | |||
|- | |||
| 4.15 || Exercises || 186 | |||
|- | |||
| 4.16 || Applications of the mean-value theorem to geometric properties of functions || 187 | |||
|- | |||
| 4.17 || Second-derivative test for extrema || 188 | |||
|- | |||
| 4.18 || Curve sketching || 189 | |||
|- | |||
| 4.19 || Exercises || 191 | |||
|- | |||
| 4.20 || Worked examples of extremum problems || 191 | |||
|- | |||
| 4.21 || Exercises || 194 | |||
|- | |||
| 4.22 || Partial derivatives || 196 | |||
|- | |||
| 4.23 || Exercises || 201 | |||
|- | |||
! colspan="3" | 5. THE RELATION BETWEEN INTEGRATION AND DIFFERENTIATION | |||
|- | |- | ||
| 1 || Coordinate systems || 191 | | 1 || Coordinate systems || 191 |