Editing Geometry

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
{{quote|What we cannot speak about clearly we must pass over in silence.|Wittgenstein}}
Each section corresponds to a video in the lecture series below. The pedagogy follows a conceptual stack of layered mathematical structure from first principles. The initial utility of this page is that it will ideally allow for a user to ctrl-f any technical term and find out:
Each section corresponds to a video in the lecture series below. The pedagogy follows a conceptual stack of layered mathematical structure from first principles. The initial utility of this page is that it will ideally allow for a user to ctrl-f any technical term and find out:
# at what point it lies in the stack
# at what point it lies in the stack
Line 17: Line 19:


==Set theory==
==Set theory==
[[File:LawsOfSets.png|thumb|Laws of set theory]]
[https://www.youtube.com/watch?v=AAJB9l-HAZs&list=PLPH7f_7ZlzxTi6kS4vCmv4ZKm9u8g5yic&index=2 Lecture 02]
[https://www.youtube.com/watch?v=AAJB9l-HAZs&list=PLPH7f_7ZlzxTi6kS4vCmv4ZKm9u8g5yic&index=2 Lecture 02]


Line 25: Line 25:
epsilon-relation (member relation); Zermelo-Fraenkel axioms of set theory; Russel's paradox; existence and uniqueness of the empty set (standard textbook proof and formal proof); axioms on the existence of pair sets and union sets; examples; finite unions; functional relation and image; principle of restricted and universal comprehension; axiom of replacement; intersection and relative complement; power sets; infinity; the sets of natural and real numbers; axiom of choice; axiom of foundation.
epsilon-relation (member relation); Zermelo-Fraenkel axioms of set theory; Russel's paradox; existence and uniqueness of the empty set (standard textbook proof and formal proof); axioms on the existence of pair sets and union sets; examples; finite unions; functional relation and image; principle of restricted and universal comprehension; axiom of replacement; intersection and relative complement; power sets; infinity; the sets of natural and real numbers; axiom of choice; axiom of foundation.


definition of maps (or functions) between sets; structure-preserving maps; identity map; domain, target and image; injective, surjective and bijective maps; isomorphic sets; classification of sets: finite and countably and uncountably infinite; cardinality of a set; composition of maps; commutative diagrams; proof of associativity of composition; inverse map; definition of pre-image and properties of pre-images (with proof); equivalence relations: reflexivity,  symmetry, transitivity; examples; equivalence classes and quotient set; well-defined maps; construction of , , , (natural, integer, rational and real numbers); successor and predecessor maps; nth power set; addition and multiplication of numbers; canonical embeddings.
definition of maps (or functions) between sets; structure-preserving maps; identity map; domain, target and image; injective, surjective and bijective maps; isomorphic sets; classification of sets: finite and countably and uncountably infinite; cardinality of a set; composition of maps; commutative diagrams; proof of associativity of composition; inverse map; definition of pre-image and properties of pre-images (with proof); equivalence relations: reflexivity,  symmetry, transitivity; examples; equivalence classes and quotient set; well-defined maps; construction of N, Z, Q, R (natural, integer, rational and real numbers); successor and predecessor maps; nth power set; addition and multiplication of numbers; canonical embeddings.


==Topological spaces==
==Topological spaces==
Line 135: Line 135:


proof of the equivalence of local sections and G-equivariant functions; linear actions on associated vector fibre bundles; matrix Lie group; construction of the covariant derivative for local sections on the base manifold.
proof of the equivalence of local sections and G-equivariant functions; linear actions on associated vector fibre bundles; matrix Lie group; construction of the covariant derivative for local sections on the base manifold.
==Applications==
==Applications==
===Quantum mechanics on curved spaces===
===Quantum mechanics on curved spaces===
[https://www.youtube.com/watch?v=C93KzJ7-Es4&list=PLPH7f_7ZlzxTi6kS4vCmv4ZKm9u8g5yic&index=26 Lecture 26]
[https://www.youtube.com/watch?v=C93KzJ7-Es4&list=PLPH7f_7ZlzxTi6kS4vCmv4ZKm9u8g5yic&index=26 Lecture 26]
===Spin structures===
===Spin structures===
[https://www.youtube.com/watch?v=Way8FfcMpf0&list=PLPH7f_7ZlzxTi6kS4vCmv4ZKm9u8g5yic&index=27 Lecture 27]
[https://www.youtube.com/watch?v=Way8FfcMpf0&list=PLPH7f_7ZlzxTi6kS4vCmv4ZKm9u8g5yic&index=27 Lecture 27]
===Kinematical and dynamical symmetries===
===Kinematical and dynamical symmetries===
[https://www.youtube.com/watch?v=F3oGhXNhIDo&list=PLPH7f_7ZlzxTi6kS4vCmv4ZKm9u8g5yic&index=28 Lecture 28]
[https://www.youtube.com/watch?v=F3oGhXNhIDo&list=PLPH7f_7ZlzxTi6kS4vCmv4ZKm9u8g5yic&index=28 Lecture 28]
{{Stub}}
[[Category:Graph, Wall, Tome]]
[[Category:Graph, Wall, Tome]]
[[Category:Mathematics]]
Please note that all contributions to The Portal Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see The Portal:Copyrights for details). Do not submit copyrighted work without permission!
Cancel Editing help (opens in new window)

Template used on this page: