Graph, Wall, Tome: Difference between revisions

42 bytes removed ,  31 January 2020
Line 53: Line 53:
If one wants to summarise our knowledge of physics in the briefest possible terms, there are three really fundamental observations:
If one wants to summarise our knowledge of physics in the briefest possible terms, there are three really fundamental observations:


# [https://en.wikipedia.org/wiki/Spacetime Spacetime] is a [https://en.wikipedia.org/wiki/Pseudo-Riemannian_manifold pseudo-Riemannian manifold] : $$M$$, endowed with a [https://en.wikipedia.org/wiki/Metric_tensor metric tensor] and governed by [https://en.wikipedia.org/wiki/Geometry geometrical laws].
# [https://en.wikipedia.org/wiki/Spacetime Spacetime] is a [https://en.wikipedia.org/wiki/Pseudo-Riemannian_manifold pseudo-Riemannian manifold] : $$M$$, endowed with a [[metric tensor]] and governed by [https://en.wikipedia.org/wiki/Geometry geometrical laws].
# Over $$M$$ is a [https://en.wikipedia.org/wiki/Principal_bundle principal bundle] : $$P_{G}$$, with a [https://en.wikipedia.org/wiki/Non-abelian_group non-abelian structure group] : $$G$$.
# Over $$M$$ is a [https://en.wikipedia.org/wiki/Principal_bundle principal bundle] : $$P_{G}$$, with a [https://en.wikipedia.org/wiki/Non-abelian_group non-abelian structure group] : $$G$$.
# [https://en.wikipedia.org/wiki/Fermion Fermions] are sections of $$(\hat{S}_{+} \otimes V_{R}) \oplus (\hat{S}\_ \otimes V_{\bar{R}})$$. $$R$$ and $$\bar{R}$$ are not [https://en.wikipedia.org/wiki/Isomorphism isomorphic]; their failure to be isomorphic explains why the light fermions are light.
# [https://en.wikipedia.org/wiki/Fermion Fermions] are sections of $$(\hat{S}_{+} \otimes V_{R}) \oplus (\hat{S}\_ \otimes V_{\bar{R}})$$. $$R$$ and $$\bar{R}$$ are not [https://en.wikipedia.org/wiki/Isomorphism isomorphic]; their failure to be isomorphic explains why the light fermions are light.