Editing Theory of Geometric Unity

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 63: Line 63:
</blockquote>
</blockquote>


<div class="toccolours mw-collapsible mw-collapsed" style="width:1000px; overflow:auto;">
'''Comments'''
<div style="font-weight:bold;line-height:1.6;">Comments</div>
<div class="mw-collapsible-content">


'''Mark-Moon:''' Can anyone explicate Eric's point about spinor fields depending (in a bad way) on the metric in conventional theories, in a way that is no longer the case in GU? I feel like this is the original idea in GU that I'm closest to being able to understand, but I don't think I quite get it yet.
'''Mark-Moon:''' Can anyone explicate Eric's point about spinor fields depending (in a bad way) on the metric in conventional theories, in a way that is no longer the case in GU? I feel like this is the original idea in GU that I'm closest to being able to understand, but I don't think I quite get it yet.
Line 71: Line 69:
'''Chain:''' Yeah I was wondering this as well, as far as I was aware you just need a spin structure, which only depends on the topology and atlas on the manifold and not on the choice of metric [https://math.stackexchange.com/questions/2836814/dependence-of-spinor-bundle-on-choice-of-metric]. Perhaps the point is that although each choice of metric yields an isomorphic spin structure, perhaps there is not a canonical isomorphism in the same way as in GU where the bundle of metrics Y (U in the talk) is isomorphic to the Chimeric bundle C, but the choice of isomorphism is given by a choice of connection on Y. Although I don't know why the chimeric bundle would come with a canonical choice of spin structure either, which seems to be Eric's claim
'''Chain:''' Yeah I was wondering this as well, as far as I was aware you just need a spin structure, which only depends on the topology and atlas on the manifold and not on the choice of metric [https://math.stackexchange.com/questions/2836814/dependence-of-spinor-bundle-on-choice-of-metric]. Perhaps the point is that although each choice of metric yields an isomorphic spin structure, perhaps there is not a canonical isomorphism in the same way as in GU where the bundle of metrics Y (U in the talk) is isomorphic to the Chimeric bundle C, but the choice of isomorphism is given by a choice of connection on Y. Although I don't know why the chimeric bundle would come with a canonical choice of spin structure either, which seems to be Eric's claim
to define spinors you would need a clifford bundle and hence a choice of metric on the chimeric bundle
to define spinors you would need a clifford bundle and hence a choice of metric on the chimeric bundle
</div></div>


=== Problem Nr. 3:Β  The Higgs field introduces a lot of arbitrariness ===
=== Problem Nr. 3:Β  The Higgs field introduces a lot of arbitrariness ===
Please note that all contributions to The Portal Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see The Portal:Copyrights for details). Do not submit copyrighted work without permission!
Cancel Editing help (opens in new window)