Editing The Road to Reality Study Notes

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 327: Line 327:
We now know that complex smoothness throughout a region is equivalent to the existence of a power series expansion about any point in the region.  A region here is defined as a open region, where the boundary is not included in the domain.
We now know that complex smoothness throughout a region is equivalent to the existence of a power series expansion about any point in the region.  A region here is defined as a open region, where the boundary is not included in the domain.


For example, if there is no singularity in the function, the region can be thought of as a circle of infinite radius. Taking <math>f(z)=\frac{1}{z}</math> however forces an infinite number of circles centered at any point with boundary radii passing through the origin (noting that an open region does not contain the boundary) to construct the domain.
For example, if there is no singularity in the function, the region can be thought of as a circle of infinite radius. Taking <math>f(z)=\frac{1}{z}</math> however forces an infinite number of circles that pass through the origin (noting that an open region does not contain the boundary) to construct the domain.


Now we consider the question, given a function <math>f(z)</math> holomorphic in domain <math>D</math>, can we extend the domain to a larger <math>D’</math> so that <math>f(z)</math> also extends holomorphically?  A procedure is formed in which we use a succession of power series about a sequence of points, forming a path where the circles of convergence overlap.  This then results in a function that is uniquely determined by the values in the initial region as well as the path along which it was continued.  Penrose notes this [https://en.wikipedia.org/wiki/Analytic_continuation analytic continuation] as a remarkable ‘rigidity’ about holomorphic functions.
Now we consider the question, given a function <math>f(z)</math> holomorphic in domain <math>D</math>, can we extend the domain to a larger <math>D’</math> so that <math>f(z)</math> also extends holomorphically?  A procedure is formed in which we use a succession of power series about a sequence of points, forming a path where the circles of convergence overlap.  This then results in a function that is uniquely determined by the values in the initial region as well as the path along which it was continued.  Penrose notes this [https://en.wikipedia.org/wiki/Analytic_continuation analytic continuation] as a remarkable ‘rigidity’ about holomorphic functions.
Please note that all contributions to The Portal Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see The Portal:Copyrights for details). Do not submit copyrighted work without permission!
Cancel Editing help (opens in new window)