Editing The Road to Reality Study Notes

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 320: Line 320:
If we use this to provide the definition of a derivative at a point, we can then construct a Maclaurin formula (if using the origin, otherwise the more general [https://en.wikipedia.org/wiki/Taylor_series Taylor series]) for <math>f(z)</math> using the derivatives in the coefficients of the terms.
If we use this to provide the definition of a derivative at a point, we can then construct a Maclaurin formula (if using the origin, otherwise the more general [https://en.wikipedia.org/wiki/Taylor_series Taylor series]) for <math>f(z)</math> using the derivatives in the coefficients of the terms.


:<math> \sum_{n=0} ^ {\infty} \frac {f^{(n)}(p)}{n!} (z-p)^{n} </math>
:<math> \sum_{n=0} ^ {\infty} \frac {f^{(n)}(p)}{n!} (z-p)^{n}, </math>


This can be shown to sum to <math>f(z)</math>, thereby showing the function has an actual <math>n</math>th derivative at the origin or general point <math>p</math>.  This concludes the argument showing that complex smoothness in a region surrounding the origin or point implies that the function is also holomorphic. Penrose notes that neither the premise (<math>f(z)</math> is complex-smooth) nor the conclusion (<math>f(z)</math> is analytic) contains contour integration or multivaluedness of a complex logarithm, yet these ingredients are essential for finding the route to the answer and that this is a ‘wonderful example of the way that mathematicians can often obtain their results’.
This can be shown to sum to <math>f(z)</math>, thereby showing the function has an actual <math>n</math>th derivative at the origin or general point <math>p</math>.  This concludes the argument showing that complex smoothness in a region surrounding the origin or point implies that the function is also holomorphic. Penrose notes that neither the premise (<math>f(z)</math> is complex-smooth) nor the conclusion (<math>f(z)</math> is analytic) contains contour integration or multivaluedness of a complex logarithm, yet these ingredients are essential for finding the route to the answer and that this is a ‘wonderful example of the way that mathematicians can often obtain their results’.
Please note that all contributions to The Portal Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see The Portal:Copyrights for details). Do not submit copyrighted work without permission!
Cancel Editing help (opens in new window)