Editing Statistical Physics part 2 - quantum theory (Book)

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 20: Line 20:
Quantum statistical physics is fundamental in the description of superfluid Helium, metals and ordinary conductivity, superconductivity, and other quantum phenomena of matter. One of the initiators of the field was Landau himself, many famous models are named after him. Carrying this on, Philip Anderson coined the name "condensed matter physics" and developed the technique of symmetry breaking and Anderson localization. Anderson's symmetry breaking and the resulting Goldstone-Bosons originated here, despite the fame of the Higgs mechanism in the Electroweak theory that explains how many fundamental particles appear to gain mass. Β 
Quantum statistical physics is fundamental in the description of superfluid Helium, metals and ordinary conductivity, superconductivity, and other quantum phenomena of matter. One of the initiators of the field was Landau himself, many famous models are named after him. Carrying this on, Philip Anderson coined the name "condensed matter physics" and developed the technique of symmetry breaking and Anderson localization. Anderson's symmetry breaking and the resulting Goldstone-Bosons originated here, despite the fame of the Higgs mechanism in the Electroweak theory that explains how many fundamental particles appear to gain mass. Β 


As such, it has already shown to be an important proving grounds both experimentally and theoretically for methods in quantum field theory, and this continues to be the case. Modern problems focus on the engineering of artificial atoms (Quantum Dots), the theory of superconductivity for high critical temperatures (this is not explained by the usual low Tc theory), the Integer and Fractional Quantum Hall Effects; From those come emergent gauge fields, Chern-Simons theory, Topological Quantum Computing, Anyons, the Twisted-Equivariant cohomology classification of topological phases (Kitaev, Freed), and applications of AdS/CFT. Condensed matter, due to this and the immense wealth produced by the development of semiconductors and modern computing devices, is the largest and most active area of physics today.
As such, it has already shown to be an important proving grounds both experimentally and theoretically for methods in quantum field theory, and this continues to be the case. Modern problems focus on the engineering of artificial atoms (Quantum Dots), the theory of superconductivity for high critical temperatures (this is not explained by the usual low Tc theory), the Integer and Fractional Quantum Hall Effects; From those come emergent gauge fields, Chern-Simons theory, the Twisted-Equivariant cohomology classification of topological phases (Kitaev, Freed), and applications of AdS/CFT. Condensed matter, due to this and the immense wealth produced by the development of semiconductors and modern computing devices, is the largest and most active area of physics today.


For resources, Heidelberg University has a Condensed Matter group which focuses on engineering quantum systems: [https://www.kip.uni-heidelberg.de/cmm/teaching/2020/quantum_materials/tutorials/tut5?lang=en kondo effect in quantum dots], [http://www.kip.uni-heidelberg.de/synqs/ synthetic quantum systems]. An exceptional master's student thesis on twisted equivariant cohomology and the 10-fold way/K-theory classification is [https://webspace.science.uu.nl/~0554804/publications/bachelor.pdf here]. Otherwise, Freed's and Kitaev's ideas will be encountered in their full form in the books here or their papers. Note that Dan Freed works in the developed language of cohomology theories in algebraic topology, changing between geometric methods like those in Spin Geometry and gauge theory, or simplicial methods/spectra from formal algebraic topology. Additionally, [https://www.damtp.cam.ac.uk/user/tong/qhe.html David Tong's page] contains many online condensed matter/quantum hall effect lecture notes and external resources. It is worth emphasizing that the foundation of these effects/phases is the crystal lattice structure of metals (basic theory, Bloch functions, in Landau). It is a mathematical reinterpretation of this situation that gives us point symmetry groups acting on the Brillouin torus, bundles and band structures over the torus.
For resources, Heidelberg University has a Condensed Matter group which focuses on engineering quantum systems: [https://www.kip.uni-heidelberg.de/cmm/teaching/2020/quantum_materials/tutorials/tut5?lang=en kondo effect in quantum dots], [http://www.kip.uni-heidelberg.de/synqs/ synthetic quantum systems]. An exceptional master's student thesis on twisted equivariant cohomology and the 10-fold way/K-theory classification is [https://webspace.science.uu.nl/~0554804/publications/bachelor.pdf here]. Otherwise, Freed's and Kitaev's ideas will be encountered in their full form in the books here or their papers. Note that Dan Freed works in the developed language of cohomology theories in algebraic topology, changing between geometric methods like those in Spin Geometry and gauge theory, or simplicial methods/spectra from formal algebraic topology. Additionally, [https://www.damtp.cam.ac.uk/user/tong/qhe.html David Tong's page] contains many online condensed matter/quantum hall effect lecture notes and external resources. It is worth emphasizing that the foundation of these effects/phases is the crystal lattice structure of metals (basic theory, Bloch functions, in Landau). It is a mathematical reinterpretation of this situation that gives us point symmetry groups acting on the Brillouin torus, bundles and band structures over the torus.
Please note that all contributions to The Portal Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see The Portal:Copyrights for details). Do not submit copyrighted work without permission!
Cancel Editing help (opens in new window)

Templates used on this page: