Editing Physical Kinetics (Book)

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 22: Line 22:
We of course aim to describe specific physical processes, but not without also introducing the general mathematical principles. As is covered in stochastic quantization within the [[Statistical_Physics_(Book)#Applications|statistical physics applications]] and in statistical field theory, random processes must be integrated through a Riemann-sum-like discrete collection of random samples. This is because continuous random processes are not smooth, so the naive idea of differentiating them and writing differential equations with random source terms does not make sense. Another basic introduction to stochastic differential equations (SDEs) is also within the open quantum systems book, in the context of quantum particles affected by a large classical system.  
We of course aim to describe specific physical processes, but not without also introducing the general mathematical principles. As is covered in stochastic quantization within the [[Statistical_Physics_(Book)#Applications|statistical physics applications]] and in statistical field theory, random processes must be integrated through a Riemann-sum-like discrete collection of random samples. This is because continuous random processes are not smooth, so the naive idea of differentiating them and writing differential equations with random source terms does not make sense. Another basic introduction to stochastic differential equations (SDEs) is also within the open quantum systems book, in the context of quantum particles affected by a large classical system.  


SDEs associated to random classical fields also have a fundamental relationship to quantum supersymmetric gauge theories, where this time the supersymmetry originates algebraically from the algebra of differential forms and the exterior derivative as opposed to speculative fundamental particle physics. Partially, this analogy is evident through the use of Feynman-like diagrams in kinetic theory independently. This perspective was initiated by Parisi, and is continued in statistical physics. A kinetic application of this idea is to model the electromagnetic fields of the brain and neuronal processes like neuroavalanches and long range order with SDEs and with this gauge-geometry in mind. This is new, so there are no books on the topic, but we recommend starting with the paper by Igor V. Ovchinnikov and Skirmantas Janusonis: [https://arxiv.org/abs/2102.03849 Toward an Effective Theory of Neurodynamics: Topological Supersymmetry Breaking, Network Coarse-Graining, and Instanton Interaction] or with Ovchinnikov's introductory paper on the mathematical ideas: [https://arxiv.org/abs/1511.03393 Introduction to Supersymmetric Theory of Stochastics] which contains many helpful references including the original writing by Parisi himself, e.g. [https://www.sciencedirect.com/science/article/abs/pii/0550321382905387 Supersymmetric field theories and stochastic differential equations].
SDEs associated to random classical fields also have a fundamental relationship to quantum supersymmetric gauge theories, where this time the supersymmetry originates algebraically from the algebra of differential forms and the exterior derivative as opposed to speculative fundamental particle physics. This perspective was initiated by Parisi, and is continued in statistical physics. A kinetic application of this idea is to model the electromagnetic fields of the brain and neuronal processes like neuroavalanches and long range order with SDEs and with this gauge-geometry in mind. This is new, so there are no books on the topic, but we recommend starting with the paper by Igor V. Ovchinnikov and Skirmantas Janusonis: [https://arxiv.org/abs/2102.03849 Toward an Effective Theory of Neurodynamics: Topological Supersymmetry Breaking, Network Coarse-Graining, and Instanton Interaction] or with Ovchinnikov's introductory paper on the mathematical ideas: [https://arxiv.org/abs/1511.03393 Introduction to Supersymmetric Theory of Stochastics] which contains many helpful references including the original writing by Parisi himself.


=== Applications ===
=== Applications ===
Please note that all contributions to The Portal Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see The Portal:Copyrights for details). Do not submit copyrighted work without permission!
Cancel Editing help (opens in new window)

Templates used on this page: