A Portal Special Presentation- Geometric Unity: A First Look: Difference between revisions

Line 655: Line 655:
<p>[02:06:21] Then, you have one copy of matter, whatever it is that we see in our world: the first generation. In order for that to become interesting, it has to have an equation, so it has to get mapped somewhere. Then we've seen the muon and all the rest of the matter that comes with it. We have a second generation.
<p>[02:06:21] Then, you have one copy of matter, whatever it is that we see in our world: the first generation. In order for that to become interesting, it has to have an equation, so it has to get mapped somewhere. Then we've seen the muon and all the rest of the matter that comes with it. We have a second generation.


<p>[02:06:44] Then in the mid 1970s. [Martin Lewis] Perl finds the tau particle and we start to get panicked that we don't understand what's going on. One thing we can do is we could move these equations around a little bit and move the equation for the first generation back, and then we can start adding particles. Let's imagine that we could guess what particles we'd add.
<p>[02:06:44] Then in the mid 1970s [Martin Lewis] Perl finds the tau particle and we start to get panicked that we don't understand what's going on. One thing we can do is we could move these equations around a little bit and move the equation for the first generation back, and then we can start adding particles. Let's imagine that we could guess what particles we'd add.


<p>[02:07:10] We'd had a pseudo-generation of 16 particles. Spin three-halves, never before seen. Not necessarily super-partners, Rarita-Schwinger matter with familiar internal quantum numbers, but potentially so that they're flipped. So that matter looks like anti-matter to this generation. Then we add just for the heck of it, 144 spin one-half fermions, which contain a bunch of particles with familiar quantum numbers, but also some very exotic looking particles that nobody's ever seen before.
<p>[02:07:10] We'd had a pseudo-generation of 16 particles. Spin three-halves, never before seen. Not necessarily super-partners, Rarita-Schwinger matter with familiar internal quantum numbers, but potentially so that they're flipped. So that matter looks like anti-matter to this generation. Then we add just for the heck of it, 144 spin one-half fermions, which contain a bunch of particles with familiar quantum numbers, but also some very exotic looking particles that nobody's ever seen before.
Anonymous user