A Portal Special Presentation- Geometric Unity: A First Look: Difference between revisions
A Portal Special Presentation- Geometric Unity: A First Look (edit)
Revision as of 18:24, 25 April 2020
, 25 April 2020ββGU III: Physics
Line 545: | Line 545: | ||
<p>[01:43:33] What can we write down in terms of equations of motion: let's start with Einstein's concept. If we do, of the curvature tensor, but the gauge potential hit with an operator. Defined by the epsilon sigma field plus the star operator acting on the augmented torsion of the pair, this contains all of the information when $$\pi$$ is zero in Einstein's tensor. | <p>[01:43:33] What can we write down in terms of equations of motion: let's start with Einstein's concept. If we do, of the curvature tensor, but the gauge potential hit with an operator. Defined by the epsilon sigma field plus the star operator acting on the augmented torsion of the pair, this contains all of the information when $$\pi$$ is zero in Einstein's tensor. | ||
<p>[01:44:16] In other words, there is a spinorial analog of the Weyl curvature, a spinorial analog of the traceless Ricci curvature, and a spinorial analog of the scalar curvature. This operator should shear off the analog of the Weyl curvature. Just the way the Einstein's projection shears off the Weyl curvature, when you're looking at the tangent bundle, and this term, which is now gauge invariant, may be considered as containing a piece that looks like $$\ | <p>[01:44:16] In other words, there is a spinorial analog of the Weyl curvature, a spinorial analog of the traceless Ricci curvature, and a spinorial analog of the scalar curvature. This operator should shear off the analog of the Weyl curvature. Just the way the Einstein's projection shears off the Weyl curvature, when you're looking at the tangent bundle, and this term, which is now gauge invariant, may be considered as containing a piece that looks like $$\Lambda$$ times $$G_{\mu \nu}$$, or a cosmological constant. | ||
<p>[01:44:51] And this piece here. | <p>[01:44:51] And this piece here. |