A Portal Special Presentation- Geometric Unity: A First Look: Difference between revisions

Line 677: Line 677:
<p>[02:06:05] Okay, let's try to think about how we would come up with this field content starting from first principles. Let's imagine that there's nothing to begin with.
<p>[02:06:05] Okay, let's try to think about how we would come up with this field content starting from first principles. Let's imagine that there's nothing to begin with.


<p>[02:06:21] Then, you have one copy of matter, whatever it is that we see in our world: the first generation. In order for that to become interesting, it has to have an equation, so it has to get mapped somewhere. Then we've seen the $$\muon$$ and all the rest of the matter that comes with it. We have a second generation.
<p>[02:06:21] Then, you have one copy of matter, whatever it is that we see in our world: the first generation. In order for that to become interesting, it has to have an equation, so it has to get mapped somewhere. Then we've seen the muon and all the rest of the matter that comes with it. We have a second generation.


<p>[02:06:44] Then in the mid 1970s. [Martin Lewis] Perl finds the tau particle and we start to get panicked that we don't understand what's going on. One thing we can do is we could move these equations around a little bit and move the equation for the first generation back, and then we can start adding particles. Let's imagine that we could guess what particles we'd add.
<p>[02:06:44] Then in the mid 1970s. [Martin Lewis] Perl finds the tau particle and we start to get panicked that we don't understand what's going on. One thing we can do is we could move these equations around a little bit and move the equation for the first generation back, and then we can start adding particles. Let's imagine that we could guess what particles we'd add.
Anonymous user