447
edits
mNo edit summary |
mNo edit summary |
||
Line 27: | Line 27: | ||
<br> | <br> | ||
Supposing <math> q_i(t) </math> solves the EL equations for s degrees of freedom, we can analyze properties of the integral across finite time <math> S = \int_{t_1}^{t_2} L(q_1(t), \cdots, q_s(t), \dot{q}_1(t), \cdots, \dot{q}_s(t), t) dt </math>, since substituting the trajectory gives a strict function of time. | Supposing <math> q_i(t) </math> solves the EL equations for s degrees of freedom, we can analyze properties of the integral across finite time <math> S = \int_{t_1}^{t_2} L(q_1(t), \cdots, q_s(t), \dot{q}_1(t), \cdots, \dot{q}_s(t), t) dt </math>, since substituting the trajectory gives a strict function of time. | ||
=== Infinite Dimensional Techniques === | |||
=== Hamiltonians and Geometry === | |||
=== Lie Algebras and Symmetry === |