6,489
edits
ConceptHut (talk | contribs) No edit summary |
No edit summary |
||
Line 23: | Line 23: | ||
If one wants to summarize our knowledge of physics in the briefest possible terms, there are three really fundamental observations: | If one wants to summarize our knowledge of physics in the briefest possible terms, there are three really fundamental observations: | ||
# [https://en.wikipedia.org/wiki/Spacetime Spacetime] is a [https://en.wikipedia.org/wiki/Pseudo-Riemannian_manifold pseudo-Riemannian manifold] : | # [https://en.wikipedia.org/wiki/Spacetime Spacetime] is a [https://en.wikipedia.org/wiki/Pseudo-Riemannian_manifold pseudo-Riemannian manifold] : <math>M</math>, endowed with a [[metric tensor]] and governed by [https://en.wikipedia.org/wiki/Geometry geometrical laws]. | ||
# Over | # Over <math>M</math> is a [https://en.wikipedia.org/wiki/Vector_bundle vector bundle] : <math>X</math>, with a [https://en.wikipedia.org/wiki/Non-abelian_group non-abelian] [https://en.wikipedia.org/wiki/Gauge_theory gauge group] : <math>G</math>. | ||
# [https://en.wikipedia.org/wiki/Fermion Fermions] are sections of | # [https://en.wikipedia.org/wiki/Fermion Fermions] are sections of <math>(\hat{S}_{+} \otimes V_{R}) \oplus (\hat{S}\_ \otimes V_{\tilde{R}})</math>. <math>R</math> and <math>\tilde{R}</math> are not [https://en.wikipedia.org/wiki/Isomorphism isomorphic]; their failure to be isomorphic explains why the light fermions are light. | ||
All of this must be supplemented with the understanding that the geometrical laws obeyed by the metric tensor, the [https://en.wikipedia.org/wiki/Introduction_to_gauge_theory gauge fields], and the fermions are to be interpreted in [https://en.wikipedia.org/wiki/Quantum_mechanics quantum mechanical] terms. | All of this must be supplemented with the understanding that the geometrical laws obeyed by the metric tensor, the [https://en.wikipedia.org/wiki/Introduction_to_gauge_theory gauge fields], and the fermions are to be interpreted in [https://en.wikipedia.org/wiki/Quantum_mechanics quantum mechanical] terms. | ||
Line 44: | Line 44: | ||
If one wants to summarise our knowledge of physics in the briefest possible terms, there are three really fundamental observations: | If one wants to summarise our knowledge of physics in the briefest possible terms, there are three really fundamental observations: | ||
# [https://en.wikipedia.org/wiki/Spacetime Spacetime] is a [https://en.wikipedia.org/wiki/Pseudo-Riemannian_manifold pseudo-Riemannian manifold] : | # [https://en.wikipedia.org/wiki/Spacetime Spacetime] is a [https://en.wikipedia.org/wiki/Pseudo-Riemannian_manifold pseudo-Riemannian manifold] : <math>M</math>, endowed with a [[metric tensor]] and governed by [https://en.wikipedia.org/wiki/Geometry geometrical laws]. | ||
# Over | # Over <math>M</math> is a [https://en.wikipedia.org/wiki/Principal_bundle principal bundle] : <math>P_{G}</math>, with a [https://en.wikipedia.org/wiki/Non-abelian_group non-abelian] [https://en.wikipedia.org/wiki/Fiber_bundle#Structure_groups_and_transition_functions structure group] : <math>G</math>. | ||
# [https://en.wikipedia.org/wiki/Fermion Fermions] are sections of | # [https://en.wikipedia.org/wiki/Fermion Fermions] are sections of <math>(\hat{S}_{+} \otimes V_{R}) \oplus (\hat{S}\_ \otimes V_{\bar{R}})</math>. <math>R</math> and <math>\bar{R}</math> are not [https://en.wikipedia.org/wiki/Isomorphism isomorphic]; their failure to be isomorphic explains why the light fermions are light. | ||
# Add something about Higgs | # Add something about Higgs | ||
All of this must be supplemented with the understanding that the geometrical laws obeyed by the metric tensor, the [https://en.wikipedia.org/wiki/Introduction_to_gauge_theory gauge fields], and the fermions are to be interpreted in [https://en.wikipedia.org/wiki/Quantum_mechanics quantum mechanical] terms. | All of this must be supplemented with the understanding that the geometrical laws obeyed by the metric tensor, the [https://en.wikipedia.org/wiki/Introduction_to_gauge_theory gauge fields], and the fermions are to be interpreted in [https://en.wikipedia.org/wiki/Quantum_mechanics quantum mechanical] terms. | ||
</blockquote> | </blockquote> |