PronouncedSilence

Joined 5 February 2020
no edit summary
No edit summary
No edit summary
 
Line 51: Line 51:
A generalization of Lagrangian Mechanics to a probabilistic mechanics via not assuming that x and dx commute and using <!-- <a href="https://www.codecogs.com/eqnedit.php?latex=\delta&space;ExpectationValue(S)&space;=&space;0" target="_blank"><img src="https://latex.codecogs.com/gif.latex?\delta&space;ExpectationValue(S)&space;=&space;0" title="\delta ExpectationValue(S) = 0" /></a> -->
A generalization of Lagrangian Mechanics to a probabilistic mechanics via not assuming that x and dx commute and using <!-- <a href="https://www.codecogs.com/eqnedit.php?latex=\delta&space;ExpectationValue(S)&space;=&space;0" target="_blank"><img src="https://latex.codecogs.com/gif.latex?\delta&space;ExpectationValue(S)&space;=&space;0" title="\delta ExpectationValue(S) = 0" /></a> -->


$$\delta ExpectationValue(S) = 0$$
<math>\delta ExpectationValue(S) = 0</math>


Perhaps the equations of quantum mechanics follow?
Perhaps the equations of quantum mechanics follow?