6,489
edits
No edit summary |
No edit summary |
||
Line 33: | Line 33: | ||
| <nowiki>*</nowiki>I 1.4 || Exercises || 8 | | <nowiki>*</nowiki>I 1.4 || Exercises || 8 | ||
|- | |- | ||
| I 1.5 || | | I 1.5 || A critical analysis of the Archimedes' method || 8 | ||
|- | |- | ||
| I 1.6 || | | I 1.6 || The approach to calculus to be used in this book || 10 | ||
|- | |- | ||
! colspan="3" | | ! colspan="3" | Part 2: Some Basic Concepts of the Theory of Sets | ||
|- | |- | ||
| 1 || | | I 2.1 || Introduction to set theory || 11 | ||
|- | |- | ||
| 2 || | | I 2.2 || Notations for designating sets || 12 | ||
|- | |- | ||
| I 2.3 || Subsets || 12 | |||
|- | |- | ||
| | | I 2.4 || Unions, intersections, complements || 13 | ||
|- | |- | ||
| 2 || | | I 2.5 || Exercises || 15 | ||
|- | |- | ||
| 3 | ! colspan="3" | Part 3: A set of Axioms for the Real-Number System | ||
|- | |- | ||
| | | I 3.1 || Introduction || 17 | ||
|- | |- | ||
! colspan="3" | | | I 3.2 || The field axioms || 17 | ||
|- | |||
| <nowiki>*</nowiki>I 3.3 || Exercises || 19 | |||
|- | |||
| I 3.4 || The order axioms || 19 | |||
|- | |||
| <nowiki>*</nowiki>I 3.5 || Exercises || 21 | |||
|- | |||
| I 3.6 || Integers and rational numbers || 21 | |||
|- | |||
| I 3.7 || Geometric interpretation of real numbers as points on a line || 22 | |||
|- | |||
| I 3.8 || Upper bound of a set, maximum element, least upper bound (supremum) || 23 | |||
|- | |||
| I 3.9 || The least-Upper-bound axiom (completeness axiom) || 25 | |||
|- | |||
| I 3.10 || The Archimedean property of the real-number system || 25 | |||
|- | |||
| I 3.11 || Fundamental properties of the supremum and infimum || 26 | |||
|- | |||
| <nowiki>*</nowiki>I 3.12 || Exercises || 28 | |||
|- | |||
| <nowiki>*</nowiki>I 3.13 || Existence of square roots of nonnegative real numbers || 29 | |||
|- | |||
| <nowiki>*</nowiki>I 3.14 || Roots of higher order. Rational powers || 30 | |||
|- | |||
| <nowiki>*</nowiki>I 3.15 || Representation of real numbers by decimals || 30 | |||
|- | |||
! colspan="3" | Part 4: Mathematical Induction, Summation Notation, and Related Topics | |||
|- | |||
| I 4.1 || An example of a proof by mathematical induction || 32 | |||
|- | |||
| I 4.2 || The principle of mathematical induction || 34 | |||
|- | |||
| <nowiki>*</nowiki>I 4.3 || The well-ordering principle || 34 | |||
|- | |||
| I 4.4 || Exercises || 35 | |||
|- | |||
| <nowiki>*</nowiki>I 4.5 || Proof of the well-ordering principle || 37 | |||
|- | |||
| I 4.6 || The summation notation || 37 | |||
|- | |||
| I 4.7 || Exercises || 39 | |||
|- | |||
| I 4.8 || Absolute values and the triangle inequality || 41 | |||
|- | |||
| I 4.9 || Exercises || 43 | |||
|- | |||
| <nowiki>*</nowiki>I 4.10 || Miscellaneous exercises involving induction || 44 | |||
|- | |- | ||
! colspan="3" | Interlude: On Logic and Mathematical Expressions | ! colspan="3" | Interlude: On Logic and Mathematical Expressions |