Fibonacci numbers: Difference between revisions

From The Portal Wiki
No edit summary
No edit summary
 
(10 intermediate revisions by 2 users not shown)
Line 12: Line 12:
:<math>0,\;1,\;1,\;2,\;3,\;5,\;8,\;13,\;21,\;34,\;55,\;89,\;144,\; \ldots</math>
:<math>0,\;1,\;1,\;2,\;3,\;5,\;8,\;13,\;21,\;34,\;55,\;89,\;144,\; \ldots</math>


The ratio <math> \frac {F_n}{F_{n+1}} \ </math> approaches the [[golden ratio]] as <math>n</math> approaches infinity.
Fibonacci numbers are named after Italian mathematician Leonardo of Pisa, later known as Fibonacci. In his 1202 book Liber Abaci, Fibonacci introduced the sequence to Western European mathematics, although the sequence had been described earlier in Indian mathematics as early as 200 BC in work by Pingala on enumerating possible patterns of Sanskrit poetry formed from syllables of two lengths.
 
==Mathematics==
The ratio <math> \frac {F_n}{F_{n+1}} \ </math> approaches the golden ratio as <math>n</math> approaches infinity.
[[File:PascalTriangleFibanacci.png|thumb|right|360px|The Fibonacci numbers are the sums of the "shallow" diagonals (shown in red) of Pascal's triangle.]]
The Fibonacci numbers occur in the sums of "shallow" diagonals in Pascal's triangle.
:<math>F_n = \sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} \binom{n-k-1}{k}</math>
 
Counting the number of ways of writing a given number <math>n</math> as an ordered sum of 1s and 2s (called compositions); there are <math>F_{n+1}</math> ways to do this. For example, if <math>n = 5</math>, then <math>F_{n+1} = F_{6} = 8</math> counts the eight compositions summing to 5:


Fibonacci numbers are named after Italian mathematician Leonardo of Pisa, later known as Fibonacci. In his 1202 book Liber Abaci, Fibonacci introduced the sequence to Western European mathematics, although the sequence had been described earlier in Indian mathematics as early as 200 BC in work by Pingala on enumerating possible patterns of Sanskrit poetry formed from syllables of two lengths.
<math>1+1+1+1+1 = 1+1+1+2 = 1+1+2+1 = 1+2+1+1 = 2+1+1+1 = 2+2+1 = 2+1+2 = 1+2+2</math>


== Resources: ==
== Resources: ==
Line 20: Line 28:
*[https://en.wikipedia.org/wiki/Fibonacci_number Fibonacci numbers]
*[https://en.wikipedia.org/wiki/Fibonacci_number Fibonacci numbers]
== Discussion: ==
== Discussion: ==
[[Category:Pages for Merging]]

Latest revision as of 16:49, 19 February 2023

A tiling with squares whose side lengths are successive Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13 and 21.

In mathematics, the Fibonacci numbers, commonly denoted [math]\displaystyle{ F_n }[/math], form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0 and 1. That is,

[math]\displaystyle{ F_0=0,\quad F_1= 1, }[/math]

and

[math]\displaystyle{ F_n=F_{n-1} + F_{n-2}, }[/math]

for [math]\displaystyle{ n \gt 1 }[/math].

The beginning of the sequence is thus:

[math]\displaystyle{ 0,\;1,\;1,\;2,\;3,\;5,\;8,\;13,\;21,\;34,\;55,\;89,\;144,\; \ldots }[/math]

Fibonacci numbers are named after Italian mathematician Leonardo of Pisa, later known as Fibonacci. In his 1202 book Liber Abaci, Fibonacci introduced the sequence to Western European mathematics, although the sequence had been described earlier in Indian mathematics as early as 200 BC in work by Pingala on enumerating possible patterns of Sanskrit poetry formed from syllables of two lengths.

Mathematics[edit]

The ratio [math]\displaystyle{ \frac {F_n}{F_{n+1}} \ }[/math] approaches the golden ratio as [math]\displaystyle{ n }[/math] approaches infinity.

The Fibonacci numbers are the sums of the "shallow" diagonals (shown in red) of Pascal's triangle.

The Fibonacci numbers occur in the sums of "shallow" diagonals in Pascal's triangle.

[math]\displaystyle{ F_n = \sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} \binom{n-k-1}{k} }[/math]

Counting the number of ways of writing a given number [math]\displaystyle{ n }[/math] as an ordered sum of 1s and 2s (called compositions); there are [math]\displaystyle{ F_{n+1} }[/math] ways to do this. For example, if [math]\displaystyle{ n = 5 }[/math], then [math]\displaystyle{ F_{n+1} = F_{6} = 8 }[/math] counts the eight compositions summing to 5:

[math]\displaystyle{ 1+1+1+1+1 = 1+1+1+2 = 1+1+2+1 = 1+2+1+1 = 2+1+1+1 = 2+2+1 = 2+1+2 = 1+2+2 }[/math]

Resources:[edit]

Discussion:[edit]