Fluid Mechanics (Book): Difference between revisions

From The Portal Wiki
mNo edit summary
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{InfoboxBook
{{InfoboxBook
|title=Quantum Electrodynamics
|title=Fluid Mechanics
|image=[[File:Landau 6 fluid mechanics cover.jpg]]
|image=[[File:Landau 6 fluid mechanics cover.jpg]]
|author=[https://en.wikipedia.org/wiki/Lev_Landau Lev Landau]
|author=[https://en.wikipedia.org/wiki/Lev_Landau Lev Landau]
Line 12: Line 12:
}}
}}


Continuum mechanics and fluid mechanics in particular are unusual as branches of mechanics. It has the most apparent relevance to geometry yet its development in this aspect is not as popular, and theory initially lagged behind the basic physical features - there was no account for drag. This was corrected towards the end of the 19th century, as physics developed overall and computational techniques coming directly from theory began (and still do) dominate. Most recently, Vladimir Arnol'd helped to show topological aspects of fluid mechanics: ideal fluid flows are geodesics in the infinite dimensional diffeomorphism group (such Lie groups also appear in QFT and CFT). The difficulties in describing turbulence persist, and it remains a testament to the difficulty of describing dynamics at multiple interacting scales. The Reynolds number expresses the scale invariance of specific phenomena, and is the entry point to the study of turbulent flows. Because of the prevalence of computational methods, fluid mechanics is also a great entry point to the general study of numerical computing.
{{NavContainerFlex
|content=
{{NavButton|link=[[Read#Landau|Read]]}}
{{NavButton|link=[[Fluid Mechanics]]}}
}}
 
Continuum mechanics and fluid mechanics in particular are unusual as branches of mechanics. It has the most apparent relevance to geometry yet its development in this aspect is not as popular, and theory initially lagged behind the basic physical features - there was no account for drag. This was corrected towards the end of the 19th century, as physics developed overall and computational techniques coming directly from theory began to (and still do) dominate. Landau's text thus produces the up-to-date theoretical ideas of fluid mechanics. Most recently, Vladimir Arnol'd helped to show topological aspects of fluid mechanics: ideal fluid flows are geodesics in the infinite dimensional diffeomorphism group (such Lie groups also appear in QFT and CFT). The difficulties in describing turbulence persist, and it remains a testament to the difficulty of describing dynamics at multiple interacting scales. The Reynolds number expresses the scale invariance of specific phenomena, and is the entry point to the study of turbulent flows. In the simplest case, this number is calculated as the ratio uL/𝜈 where u is the velocity of the flow, L is the length of an immersed object, 𝜈 is the kinematic viscosity (it contains the viscosity and density as a ratio). Zero viscosity corresponds of the limit of the Navier Stokes equations to the Euler equations as studied in Arnol'd's book. Realistic fluids have some viscosity however small, and this is accounted for in the layer of fluid flow near the immersed object where the gradient of the velocity is large (friction takes over near the object). This theory, known as Boundary Layer Theory, was developed by Prandtl. A typical example would be air, which is very inviscid and corresponds to high Reynolds numbers especially in higher speed flows associated with aeronautics.
 
Because of the prevalence of computational methods, fluid mechanics is also a great entry point to the general study of numerical computing. We take this opportunity to introduce fluid mechanics and numerical ideas simultaneously while still provoking the geometric themes from earlier in our resources. Pope's text on turbulent flows indicates the three basic methods of simulation in fluid mechanics: DNS (Direct Numerical Simulation), LES (Large Eddy Simulation), and RANS (Reynolds-Averaged-Navier-Stokes) and equally importantly the statistical interpretation of turbulence. While we expect turbulence to be technically deterministic, due to the very fine detail we may treat it like noise and calculate the frequencies involved (power spectrum) which as it sounds is the Fourier decomposition used in electromagnetism and quantum mechanics. For LES, it makes simulation easier than DNS by being able to ignore the high frequency/small spatial detail part of the spectrum and still captures the coarser features of the flow. Aside from mathematics or numerical methods, some important applications of fluid mechanics are also provided - cloud physics, plasma. Our guide to numerical thinking should also be sufficient to implement these applications. Maybe you will help predict the weather or even control it, not to mention applications to nuclear fusion! Plasma applications are largely fluid-mechanical, but will be contained under [[Physical Kinetics (Book)|Landau 10]] as that is where Landau's work on plasmas is discussed.
 
While more complex methods like mesh or multi/adaptive-grid can be used to approximately solve these PDEs, it is instructive to learn about DNS on a lattice - the step size needed to capture the features of the flow accurately can be determined algebraically from the Reynolds number. Inspecting the process of numerically solving PDEs on a lattice, one finds that the problem resolves (in the implicit step case) to solving linear systems - this is typically why linear algebra is introduced in an engineering context. This gets to the essential mathematical features of numerical methods. Some introductory course notes on numerical analysis by Olver are [https://www-users.cse.umn.edu/~olver/num.html here], and a related book of his [https://www.google.com/books/edition/Applied_Linear_Algebra/LfJdDwAAQBAJ?hl=en&gbpv=1 here]. Closer to our direction of structure preserving methods are [https://www-users.cse.umn.edu/~arnold/597.00-01/nabook.pdf Douglas Arnold's Course notes]. His book appears under [[Theory of Elasticity (Book)|Landau 7, Theory of Elasticity]], where numerical methods are continued. Solving linear systems efficiently means, for instance, looking for efficient ways to multiply matrices (e.g. Strassen's algorithm) and to interpolate data. At an even lower level one studied stability of numerical methods or even the implementation of arithmetic on computers in general. Hoping to capture the basics needed and some of the cutting edge here, Landsberg's book explains how one can think of the matrix multiplication function as a tensor itself, and do algebraic geometry in the space of tensors to better understand the complexity of the algorithms involved and to find efficient solutions. A later related book of his on tensor geometry that mentions Hackbusch's motivation is grouped with [[Statistical Physics part 2 - quantum theory (Book)|Landau 9, condensed matter physics]]. Hackbusch's books work from a similar ground of tensor geometry but focuses on the numerical PDE application. His later books develop the cutting edge of the aforementioned multigrid methods. And since interpolation/galerkin/finite element methods involve inherently functional-analytical ideas, quantum mechanics background helps in thinking about the function spaces involved but is not strictly necessary.


Numerical methods are still young, Monte Carlo was developed during the Manhattan Project, and software tools stick to rudimentary approaches to rely on high performance computing. As with our previous philosophy, the future is in geometric physics - numerical methods which preserve differential-geometric structures.
Numerical methods are still young, Monte Carlo was developed during the Manhattan Project, and software tools stick to rudimentary approaches to rely on high performance computing. Without overwhelming this page with general aspects of numerical algorithms, we will present foundations and other interesting applications [[Numerical Analysis|here]]. As with our previous philosophy, the future is in geometric physics - numerical methods which preserve differential-geometric structures. Starting from the previous numerical and specifically finite-element-mesh ideas, we present some resources for the very active area of differential-form-based interpolation and symplectic integration methods. Their importance cannot be understated, the implementation of conservation laws at the numerical level makes numerical methods not only produce apparently more physically accurate results, but also be more useful theoretically in the description of physics.


=== Applications ===
=== Applications ===
Line 35: Line 45:
| title = === Large-Eddy Simulations of Turbulence ===
| title = === Large-Eddy Simulations of Turbulence ===
| desc = Large-Eddy Simulations of Turbulence by Marcel Lesieur, Olivier Métais, and Pierre Comte.
| desc = Large-Eddy Simulations of Turbulence by Marcel Lesieur, Olivier Métais, and Pierre Comte.
}}
{{BookListing
| cover = Houze cloud dynamics cover.jpg
| link = Cloud Dynamics (Book)
| title = === Cloud Dynamics ===
| desc = Cloud Dynamics by Robert Houze.
}}
{{BookListing
| cover = Landsberg tensor geometry cover.jpg
| link = Tensors: Geometry and Applications (Book)
| title = === Tensors: Geometry and Applications ===
| desc = Tensors: Geometry and Applications by Joseph Landsberg.
}}
{{BookListing
| cover = Hackbusch tensor cover.jpg
| link = Tensor Spaces and Numerical Tensor Calculus (Book)
| title = === Tensor Spaces and Numerical Tensor Calculus ===
| desc = Tensor Spaces and Numerical Tensor Calculus by Wolfgang Hackbusch.
}}
{{BookListing
| cover = Hackbusch multigrid cover.jpg
| link = Multi-Grid Methods and Applications (Book)
| title = === Multi-Grid Methods and Applications ===
| desc = Multi-Grid Methods and Applications by Wolfgang Hackbusch.
}}
{{BookListing
| cover = Dorodnitsyn Lie difference equations cover.jpg
| link = Applications of Lie Groups to Difference Equations (Book)
| title = === Applications of Lie Groups to Difference Equations ===
| desc = Applications of Lie Groups to Difference Equations by Vladimir Dorodnitsyn.
}}
{{BookListing
| cover = Hairer lubich wanner geometric numerical integration cover.jpg
| link = Geometric Numerical Integration (Book)
| title = === Geometric Numerical Integration ===
| desc = Geometric Numerical Integration by Ernst Hairer, Christian Lubich, Gerhard Wanner.
}}
}}
</div>
</div>

Latest revision as of 19:53, 30 November 2023

Fluid Mechanics
Landau 6 fluid mechanics cover.jpg
Information
Author Lev Landau
Language English
Series Course of Theoretical Physics
Publisher Pergamon
Publication Date 1987
Pages 560
ISBN-13 978-0-08-033933-7

Continuum mechanics and fluid mechanics in particular are unusual as branches of mechanics. It has the most apparent relevance to geometry yet its development in this aspect is not as popular, and theory initially lagged behind the basic physical features - there was no account for drag. This was corrected towards the end of the 19th century, as physics developed overall and computational techniques coming directly from theory began to (and still do) dominate. Landau's text thus produces the up-to-date theoretical ideas of fluid mechanics. Most recently, Vladimir Arnol'd helped to show topological aspects of fluid mechanics: ideal fluid flows are geodesics in the infinite dimensional diffeomorphism group (such Lie groups also appear in QFT and CFT). The difficulties in describing turbulence persist, and it remains a testament to the difficulty of describing dynamics at multiple interacting scales. The Reynolds number expresses the scale invariance of specific phenomena, and is the entry point to the study of turbulent flows. In the simplest case, this number is calculated as the ratio uL/𝜈 where u is the velocity of the flow, L is the length of an immersed object, 𝜈 is the kinematic viscosity (it contains the viscosity and density as a ratio). Zero viscosity corresponds of the limit of the Navier Stokes equations to the Euler equations as studied in Arnol'd's book. Realistic fluids have some viscosity however small, and this is accounted for in the layer of fluid flow near the immersed object where the gradient of the velocity is large (friction takes over near the object). This theory, known as Boundary Layer Theory, was developed by Prandtl. A typical example would be air, which is very inviscid and corresponds to high Reynolds numbers especially in higher speed flows associated with aeronautics.

Because of the prevalence of computational methods, fluid mechanics is also a great entry point to the general study of numerical computing. We take this opportunity to introduce fluid mechanics and numerical ideas simultaneously while still provoking the geometric themes from earlier in our resources. Pope's text on turbulent flows indicates the three basic methods of simulation in fluid mechanics: DNS (Direct Numerical Simulation), LES (Large Eddy Simulation), and RANS (Reynolds-Averaged-Navier-Stokes) and equally importantly the statistical interpretation of turbulence. While we expect turbulence to be technically deterministic, due to the very fine detail we may treat it like noise and calculate the frequencies involved (power spectrum) which as it sounds is the Fourier decomposition used in electromagnetism and quantum mechanics. For LES, it makes simulation easier than DNS by being able to ignore the high frequency/small spatial detail part of the spectrum and still captures the coarser features of the flow. Aside from mathematics or numerical methods, some important applications of fluid mechanics are also provided - cloud physics, plasma. Our guide to numerical thinking should also be sufficient to implement these applications. Maybe you will help predict the weather or even control it, not to mention applications to nuclear fusion! Plasma applications are largely fluid-mechanical, but will be contained under Landau 10 as that is where Landau's work on plasmas is discussed.

While more complex methods like mesh or multi/adaptive-grid can be used to approximately solve these PDEs, it is instructive to learn about DNS on a lattice - the step size needed to capture the features of the flow accurately can be determined algebraically from the Reynolds number. Inspecting the process of numerically solving PDEs on a lattice, one finds that the problem resolves (in the implicit step case) to solving linear systems - this is typically why linear algebra is introduced in an engineering context. This gets to the essential mathematical features of numerical methods. Some introductory course notes on numerical analysis by Olver are here, and a related book of his here. Closer to our direction of structure preserving methods are Douglas Arnold's Course notes. His book appears under Landau 7, Theory of Elasticity, where numerical methods are continued. Solving linear systems efficiently means, for instance, looking for efficient ways to multiply matrices (e.g. Strassen's algorithm) and to interpolate data. At an even lower level one studied stability of numerical methods or even the implementation of arithmetic on computers in general. Hoping to capture the basics needed and some of the cutting edge here, Landsberg's book explains how one can think of the matrix multiplication function as a tensor itself, and do algebraic geometry in the space of tensors to better understand the complexity of the algorithms involved and to find efficient solutions. A later related book of his on tensor geometry that mentions Hackbusch's motivation is grouped with Landau 9, condensed matter physics. Hackbusch's books work from a similar ground of tensor geometry but focuses on the numerical PDE application. His later books develop the cutting edge of the aforementioned multigrid methods. And since interpolation/galerkin/finite element methods involve inherently functional-analytical ideas, quantum mechanics background helps in thinking about the function spaces involved but is not strictly necessary.

Numerical methods are still young, Monte Carlo was developed during the Manhattan Project, and software tools stick to rudimentary approaches to rely on high performance computing. Without overwhelming this page with general aspects of numerical algorithms, we will present foundations and other interesting applications here. As with our previous philosophy, the future is in geometric physics - numerical methods which preserve differential-geometric structures. Starting from the previous numerical and specifically finite-element-mesh ideas, we present some resources for the very active area of differential-form-based interpolation and symplectic integration methods. Their importance cannot be understated, the implementation of conservation laws at the numerical level makes numerical methods not only produce apparently more physically accurate results, but also be more useful theoretically in the description of physics.

Applications[edit]

Arnold khesin tophydro cover.jpg

Topological Methods in Hydrodynamics

Topological Methods in Hydrodynamics by Vladimir Arnol'd and Boris Khesin.

Pope turbulent flows cover.jpg

Turbulent Flows

Turbulent Flows by Stephen Pope.

Lesieur métais comte largeeddy cover.jpg

Large-Eddy Simulations of Turbulence

Large-Eddy Simulations of Turbulence by Marcel Lesieur, Olivier Métais, and Pierre Comte.

Houze cloud dynamics cover.jpg

Cloud Dynamics

Cloud Dynamics by Robert Houze.

Landsberg tensor geometry cover.jpg

Tensors: Geometry and Applications

Tensors: Geometry and Applications by Joseph Landsberg.

Hackbusch tensor cover.jpg

Tensor Spaces and Numerical Tensor Calculus

Tensor Spaces and Numerical Tensor Calculus by Wolfgang Hackbusch.

Hackbusch multigrid cover.jpg

Multi-Grid Methods and Applications

Multi-Grid Methods and Applications by Wolfgang Hackbusch.

Dorodnitsyn Lie difference equations cover.jpg

Applications of Lie Groups to Difference Equations

Applications of Lie Groups to Difference Equations by Vladimir Dorodnitsyn.

Hairer lubich wanner geometric numerical integration cover.jpg

Geometric Numerical Integration

Geometric Numerical Integration by Ernst Hairer, Christian Lubich, Gerhard Wanner.