Jump to content
Toggle sidebar
The Portal Wiki
Search
Create account
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Talk
Contributions
Navigation
Intro to The Portal
Knowledgebase
Geometric Unity
Economic Gauge Theory
All Podcast Episodes
All Content by Eric
Ericisms
Learn Math & Physics
Graph, Wall, Tome
Community
The Portal Group
The Portal Discords
The Portal Subreddit
The Portal Clips
Community Projects
Wiki Help
Getting Started
Wiki Usage FAQ
Tools
What links here
Related changes
Special pages
Page information
More
Recent changes
File List
Random page
Editing
The Road to Reality Study Notes
(section)
Page
Discussion
English
Read
Edit
View history
More
Read
Edit
View history
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===3.1 A Pythagorean catastrophe?=== We now switch over to the idea of βnumberβ, and the layers of generality that lie beneath integers. The Pythagoreans solved the question, by using proof by contradiction, of attempting to find a rational number (fraction) whose square is precisely 2. There does not exist such a number within the confines are integers and rationals, which was troubling for them at the time since it was desired to have all of geometry be described by these types of physical numbers. Penrose gives the proof by contradiction for the Pythagorean question above and explains the necessity of identifying the precise assumptions that go into a proof. He explains that there exist other generalities than that was originally used in the proof, whereby these precise assumptions must be used to judge the logic. The Pythagoreans used integers and rationals to explain the existence of the real numbers.
Summary:
Please note that all contributions to The Portal Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
The Portal:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)