Jump to content
Toggle sidebar
The Portal Wiki
Search
Create account
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Talk
Contributions
Navigation
Intro to The Portal
Knowledgebase
Geometric Unity
Economic Gauge Theory
All Podcast Episodes
All Content by Eric
Ericisms
Learn Math & Physics
Graph, Wall, Tome
Community
The Portal Group
The Portal Discords
The Portal Subreddit
The Portal Clips
Community Projects
Wiki Help
Getting Started
Wiki Usage FAQ
Tools
What links here
Related changes
Special pages
Page information
More
Recent changes
File List
Random page
Editing
Statistical Physics (Book)
(section)
Page
Discussion
English
Read
Edit
View history
More
Read
Edit
View history
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{InfoboxBook |title=Statistical Physics |image=[[File:Landau statistical physics.jpg]] |author=[https://en.wikipedia.org/wiki/Lev_Landau Lev Landau] |language=English |series=Course of Theoretical Physics |genre= |publisher=Butterworth Heinemann |publicationdate=1982 |pages=564 |isbn13=978-0-08-057046-4 }} {{NavContainerFlex |content= {{NavButton|link=[[Read#Landau|Read]]}} {{NavButton|link=[[Statistical Mechanics]]}} }} Statistical physics is commonly introduced in physics education as the physics of thermodynamics in gases and solids. This is wrong. Firstly, the standard courses neglect what Landau does, deriving the macroscopic concepts from probabilistic (but ultimately deterministic) microscopic motion. There are also numerous other applications of the subject from chemistry to crystals to phase transitions. Souriau takes this further. Statistical mechanics like classical mechanics is based on symplectic geometry, but with the added ingredient of measures. This geometric approach to statistical mechanics leads us eventually to statistical field theory and stochastic quantization with lattice statistical mechanics as a stepping stone to the continuum limit - this makes the connection to quantum field theory manifest. Statistical field theory and stochastic quantization were first coined and motivated by Parisi, who started to make the analogies between e.g. statistical correlation functions and quantum field theory propagators rigorous. From the physics, other genuinely new types of mathematical objects appear: * scale symmetry/renormalization and critical phenomena * continuous random processes * statistical learning (to be elaborated on in the future) Understanding the fundamentals of statistical mechanics and its geometric consequences may lead directly to an understanding of complex phenomena at all scales - from weather to neuronal cognition.
Summary:
Please note that all contributions to The Portal Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
The Portal:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)